
ZenMake Documentation
Release 0.11.0

Alexander Magola

2022-09-04

Contents

1 Introduction 3
1.1 What is it? . 3
1.2 Main features . 3
1.3 Plans to do . 4
1.4 Project links . 4

2 Why? 5

3 Quickstart guide 7

4 Installation 11
4.1 Via python package (pip) . 11
4.2 Via git . 12
4.3 As a zip application . 12

5 Build config 15
5.1 startdir . 16
5.2 buildroot . 16
5.3 realbuildroot . 16
5.4 project . 17
5.5 general . 17
5.6 cliopts . 18
5.7 conditions . 18
5.8 tasks . 18
5.9 buildtypes . 19
5.10 toolchains . 20
5.11 byfilter . 20
5.12 subdirs . 22
5.13 edeps . 23

6 Build config: task parameters 25
6.1 features . 25
6.2 target . 26
6.3 source . 26
6.4 includes . 29
6.5 toolchain . 29
6.6 cflags . 29

i

6.7 cxxflags . 30
6.8 dflags . 30
6.9 fcflags . 30
6.10 asflags . 30
6.11 cppflags . 30
6.12 linkflags . 30
6.13 ldflags . 31
6.14 aslinkflags . 31
6.15 arflags . 31
6.16 defines . 31
6.17 use . 32
6.18 libs . 32
6.19 libpath . 33
6.20 monitlibs . 33
6.21 stlibs . 33
6.22 stlibpath . 33
6.23 monitstlibs . 34
6.24 moc . 34
6.25 rclangprefix . 34
6.26 langdir-defname . 34
6.27 bld-langprefix . 34
6.28 unique-qmpaths . 35
6.29 rpath . 35
6.30 ver-num . 35
6.31 run . 35
6.32 configure . 37
6.33 export-<param> / export . 37
6.34 install-path . 39
6.35 install-files . 39
6.36 install-langdir . 40
6.37 normalize-target-name . 40
6.38 enabled . 40
6.39 group-dependent-tasks . 41
6.40 objfile-index . 41

7 Build config: selectable parameters 43

8 Build config: edeps 49
8.1 rootdir . 49
8.2 targets . 49
8.3 export-includes . 50
8.4 rules . 50
8.5 buildtypes-map . 52

9 Build config: extended syntax 53
9.1 Syntactic sugar . 53
9.2 Substitutions . 54

10 Commands 59

11 Environment variables 61

12 Supported languages 65
12.1 C/C++ . 65
12.2 Assembler . 66

ii

12.3 D . 66
12.4 FORTRAN . 66

13 Supported toolkits 67
13.1 Qt5 . 67

14 Configuration actions 69

15 Dependencies 77
15.1 System libraries . 77
15.2 Local libraries . 77
15.3 Sub buildconfs . 78
15.4 External dependencies . 78

16 Tests 81

17 Performance tips 85
17.1 Hash algorithm . 85

18 FAQ 87

19 Changelog 89
19.1 Version 0.11.0 (2022-09-04) . 89
19.2 Version 0.10.0 (2020-09-23) . 90
19.3 Version 0.9.0 (2019-12-10) . 92

20 License 95

iii

iv

ZenMake Documentation, Release 0.11.0

ZenMake - build system based on the meta build system Waf.

Contents 1

https://waf.io

ZenMake Documentation, Release 0.11.0

2 Contents

CHAPTER 1

Introduction

1.1 What is it?

ZenMake is a cross-platform build system for C/C++ and some other languages. It uses meta build system Waf as a
framework.

Some reasons to create this project can be found here.

1.2 Main features

• Build config as python (.py) or as yaml file. Details are here.

• Distribution as zip application or as system package (pip). See Installation.

• Automatic reconfiguring: no need to run command ‘configure’.

• Compiler autodetection.

• Building and running functional/unit tests including an ability to build and run tests only on changes. Details
are here.

• Build configs in sub directories.

• Building external dependencies.

• Supported platforms: GNU/Linux, MacOS, MS Windows. Some other platforms like OpenBSD/FreeBSD
should work as well but it hasn’t been tested.

• Supported languages:

– C: gcc, clang, msvc, icc, xlc, suncc, irixcc

– C++: g++, clang++, msvc, icpc, xlc++, sunc++

– D: dmd, ldc2, gdc; MS Windows is not supported yet

– Fortran: gfortran, ifort (should work but not tested)

3

https://waf.io

ZenMake Documentation, Release 0.11.0

– Assembler: gas (GNU Assembler)

• Supported toolkits/frameworks: - SDL v2 (Linux only) - GTK v3 (Linux only) - Qt v5

1.3 Plans to do

There is no clear roadmap for this project. I add features that I think are needed to include.

1.4 Project links

• Primary git repository: https://github.com/pustotnik/zenmake

• Secondary git repository: https://gitlab.com/pustotnik/zenmake

• Issue tracker: https://github.com/pustotnik/zenmake/issues

• Pypi package: https://pypi.org/project/zenmake

• Documentation: https://zenmake.readthedocs.io

4 Chapter 1. Introduction

https://github.com/pustotnik/zenmake
https://gitlab.com/pustotnik/zenmake
https://github.com/pustotnik/zenmake/issues
https://pypi.org/project/zenmake
https://zenmake.readthedocs.io

CHAPTER 2

Why?

Short answer: because I could and wanted.

Long answer is below.

https://news.ycombinator.com/item?id=18789162

Cool. One more "new" build system...

Yes, I know, we already have a lot of them. I decided to create this project because I couldn’t find a build tool for
Linux which is quick and easy to use, flexible, ready to use, with declarative configuration, without the need to learn
one more special language and suitable for my needs. I know about lots of build systems and I have tried some of
them.

Well, a little story of the project. In 2010 year I developed a build system in a company where I was working that
time. It was a build system based on Waf and it was used successfully for linux projects several years. But that system
had a lot of internal problems and I wanted to remake it from scratch. And in 2013 year I tried to begin a new project.
But I had no time to develop it at that time. Then, in 2019 year I decided to make some own opensorce project and
was selecting a build system for my project. I was considering only opensource cross-platform build systems that can
build C/C++ projects on GNU/Linux. Firstly I tried CMake, then Meson and Waf. Also I was looking at some other
build systems like Bazel. Eventually, I concluded that I had to try to make my own build tool.

I would do it mostly for myself, but I would be glad if my tool was useful for others.

5

https://news.ycombinator.com/item?id=18789162
https://bitbucket.org/pustotnik/zenmake.old/src/master/

ZenMake Documentation, Release 0.11.0

6 Chapter 2. Why?

CHAPTER 3

Quickstart guide

To use ZenMake you need ZenMake and buildconf file in the root of your project.

Let’s consider an example with this structure:

testproject
buildconf.yml
prog

test.cpp
shlib

util.cpp
util.h

For this project buildconf.yml can be like that:

1 tasks:
2 util :
3 features : cxxshlib
4 source : 'shlib/**/*.cpp'
5 includes : '.'
6 program :
7 features : cxxprogram
8 source : 'prog/**/*.cpp'
9 includes : '.'

10 use : util
11

12 buildtypes:
13 debug :
14 toolchain : clang++
15 cxxflags : -O0 -g
16 release :
17 toolchain : g++
18 cxxflags : -O2
19 default : debug

7

ZenMake Documentation, Release 0.11.0

Lines Description
1 Section with build tasks
2,6 Names of build tasks. By default they are used as target names. Resulting target names will be adjusted

depending on a platform. For example, on Windows ‘program’ will result to ‘program.exe’.
3 Mark build task as a C++ shared library.
4 Specify all *.cpp files in the directory ‘shlib’ recursively.
5,9 Specify the path for C/C++ headers relative to the project root directory. In this example, this parameter is

optional as ZenMake adds the project root directory itself. But it’s an example.
7 Mark build task as a C++ executable.
8 Specify all *.cpp files in the directory ‘prog’ recursively.
10 Specify task ‘util’ as dependency to task ‘program’.
12 Section with build types.
13,16 Names of build types. They can be almost any.
14 Specify Clang C++ compiler for debug.
15 Specify C++ compiler flags for debug.
17 Specify g++ compiler (from GCC) for release.
18 Specify C++ compiler flags for release.
19 Special case: specify default build type that is used when no build type was specified for ZenMake command.

In case of using python config the file buildconf.py with the same values as above would look like this:

tasks = {
'util' : {

'features' : 'cxxshlib',
'source' : 'shlib/**/*.cpp',
'includes' : '.',

},
'program' : {

'features' : 'cxxprogram',
'source' : 'prog/**/*.cpp',
'includes' : '.',
'use' : 'util',

},
}

buildtypes = {
'debug' : {

'toolchain' : 'clang++',
'cxxflags' : '-O0 -g',

},
'release' : {

'toolchain' : 'g++',
'cxxflags' : '-O2',

},
'default' : 'debug',

}

Once you have the config, run zenmake in the root of the project and ZenMake does the build:

$ zenmake

* Project name: 'testproject'

* Build type: 'debug'
Setting top to : /tmp/testproject
Setting out to : /tmp/testproject/build
Checking for 'clang++' : /usr/lib/llvm/11/bin/clang++

(continues on next page)

8 Chapter 3. Quickstart guide

ZenMake Documentation, Release 0.11.0

(continued from previous page)

[1/4] Compiling shlib/util.cpp
[2/4] Compiling prog/test.cpp
[3/4] Linking build/debug/libutil.so
[4/4] Linking build/debug/program
'build' finished successfully (0.531s)

Running ZenMake without any parameters in a directory with buildconf.py or buildconf.yml is the same as
running zenmake build. Otherwise it’s the same as zenmake help.

Get the list of all commands with a short description using zenmake help or zenmake --help. To get
help on selected command you can use zenmake help <selected command> or zenmake <selected
command> --help

For example to build release of the project above such a command can be used:

$ zenmake build -b release

* Project name: 'testproject'

* Build type: 'release'
Setting top to : /tmp/testproject
Setting out to : /tmp/testproject/build
Checking for 'g++' : /usr/bin/g++
[1/4] Compiling shlib/util.cpp
[2/4] Compiling prog/test.cpp
[3/4] Linking build/release/libutil.so
[4/4] Linking build/release/program
'build' finished successfully (0.498s)

Here is some possible variant of extended version of the config from above:

tasks:
util :
features : cxxshlib
source : 'shlib/**/*.cpp'
includes : '.'
libs : boost_timer # <-- Add the boost timer library as dependency

program :
features : cxxprogram
source : 'prog/**/*.cpp'
includes : '.'
use : util

buildtypes:
debug :
toolchain : clang++
cxxflags : -O0 -g

release :
toolchain : g++
cxxflags : -O2

default : debug

configure:
- do: check-headers
names : cstdio iostream # <-- Check C++ 'cstdio' and 'iostream' headers

- do: check-libs # <-- Check all libraries from the 'libs' parameter

One of the effective and simple ways to learn something is to use real examples. So it is recommended to look at
examples in demos directory which can be found in the repository here.

9

https://github.com/pustotnik/zenmake/tree/master/demos

ZenMake Documentation, Release 0.11.0

10 Chapter 3. Quickstart guide

CHAPTER 4

Installation

Dependencies

• Python >=3.5. Python must have threading support. Python has threading in most cases while nobody uses
--without-threads for Python building. Python >= 3.7 always has threading.

• PyYAML It’s optional and needed only if you use yaml buildconf . ZenMake can be used with yaml buildconf
file even with PyYAML not installed in an operating system because ZenMake has an internal copy of PyYAML
python library. This copy is used only if there is no PyYAML installed in an operating system.

There are different ways to install/use ZenMake:

• Via python package (pip)

• Via git

• As a zip application

4.1 Via python package (pip)

ZenMake has its own python package. You can install it by:

pip install zenmake

In this way pip will install PyYAML if it’s not installed already.

Note: POSIX: It requires root and will install it system-wide. Alternatively, you can use:

pip install --user zenmake

which will install it for your user and does not require any special privileges. This will install the package in ~/.local/,
so you will have to add ~/.local/bin to your PATH.

11

https://www.python.org/
https://pyyaml.org/
https://pypi.org/project/zenmake

ZenMake Documentation, Release 0.11.0

Windows: It doesn’t always require administrator rights.

Note: You need to have pip installed. Most of the modern Linux distributions have pip in their packages. On
Windows you can use, for example, chocolatey to install pip. Common instructions to install pip can be found here.

Note: You can install ZenMake with pip and virtualenv. In this case you don’t touch system packages and it doesn’t
require root privileges.

After installing you can run ZenMake just by typing:

zenmake

4.2 Via git

You can use ZenMake from Git repository. But branch master can be broken. Also, you can just to switch to the
required version using git tag. Each version of ZenMake has a git tag. The body of ZenMake application is located
in src/zenmake path in the repository. You don’t need other directories and files in repository and you can remove
them if you want. Then you can make symlink to src/zenmake/zmrun.py, shell alias or make executable .sh
script (for Linux/MacOS/..) or .bat (for Windows) to run ZenMake. Example for Linux (zmrepo is custom directory):

$ mkdir zmrepo
$ cd zmrepo
$ git clone https://github.com/pustotnik/zenmake.git .

Next step is optional. Switch to existing version, for example to 0.7.0:

$ git checkout v0.7.0

Here you can make symlink/alias/script to run zenmake.

Other options to run ZenMake:

$ <path-to-zenmake-repo>/src/zenmake/zmrun.py

or:

$ python <path-to-zenmake-repo>/src/zenmake

4.3 As a zip application

Zenmake can be run as an executable python zip application. And ZenMake can make such zipapp with the command
zipapp. Using steps from Via Git you can run:

$ python src/zenmake zipapp
$ ls *.pyz
zenmake.pyz
$./zenmake.pyz
...

12 Chapter 4. Installation

https://chocolatey.org/
https://pip.pypa.io/en/stable/installing/
https://pypi.python.org/pypi/virtualenv/

ZenMake Documentation, Release 0.11.0

Resulting file zenmake.pyz can be run standalone without the repository and pip. You can copy zenmake.pyz to
the root of your project and distribute this file with your project. It can be used on any supported platform and doesn’t
require any additional access and changes in your system.

Note: Since ZenMake 0.10.0 you can download ready to use zenmake.pyz from GitHub releases.

4.3. As a zip application 13

https://github.com/pustotnik/zenmake/releases

ZenMake Documentation, Release 0.11.0

14 Chapter 4. Installation

CHAPTER 5

Build config

ZenMake uses build configuration file with name buildconf.py or buildconf.yaml/buildconf.yml. First
variant is a regular python file and second one is an YAML file. ZenMake doesn’t use both files in one directory at the
same time. If both files exist in one directory then only buildconf.py will be used. Common name buildconf
is used in this manual.

The format for both config files is the same. YAML variant is a little more readable but in python variant you can add
a custom python code if you wish.

Simplified scheme of buildconf is:

startdir = path
buildroot = path
realbuildroot = path
project = { ... }
general = { ... }
cliopts = { ... }
conditions = { ... }
tasks = { name: task parameters }
buildtypes = { name: task parameters }
toolchains = { name: parameters }
byfilter = [{ for: {...}, set: task parameters }, ...]
subdirs = []
edeps = { ... }

Also see syntactic sugar.

Where symbols ‘{}’ mean an associative array/dictionary and symbols ‘[]’ mean a list. In python notation ‘{}’ is
known as dictionary. In some other languages it’s called an associative array including YAML (Of course YAML is
not programming language but it’s markup language). For shortness it’s called a dict here.

Not all variables are required in the scheme above but buildconf cannot be empty. All variables have reserved names
and they all are described here. Other names in buildconf are just ignored by ZenMake (excluding substitution vari-
ables) if present and it means they can be used for some custom purposes.

Note: About paths in general.

15

ZenMake Documentation, Release 0.11.0

You can use native paths but it’s recommended to use wherever possible POSIX paths (Symbol / is used as a separator
in a path). With POSIX paths you will ensure the same paths on different platforms/operating systems. POSIX paths
will be converted into native paths automatically, but not vice versa. For example, path ‘my/path’ will be converted
into ‘my\path’ on Windows. Also it’s recommended to use relative paths wherever possible.

Warning: Windows only: do NOT use short filename notation (8.3 filename) for paths in buildconf files. It
can cause unexpected errors.

Below is the detailed description of each buildconf variable.

5.1 startdir

A start path for all paths in a buildconf. It is . by default. The path can be absolute or relative to directory
where current buildconf file is located. It means that by default all other relative paths in the current
buildconf file are considered as the paths relative to directory with the current buildconf file. But you can
change this by setting a different value to this variable.

5.2 buildroot

A path to the root of a project build directory. By default it is directory ‘build’ in the directory with the
top-level buildconf file of the project. Path can be absolute or relative to the startdir. It is important to be
able to remove the build directory safely, so it should never be given as . or ...

Note: If you change value of buildroot with already using/existing build directory then ZenMake
will not touch previous build directory. You can remove previous build directory manually or run com-
mand distclean before changing of buildroot. ZenMake cannot do it because it stores all meta
information in current build directory and if you change this directory it will lose all such an information.

This can be changed in the future by storing extra information in some other place like user home directory
but now it is.

5.3 realbuildroot

A path to the real root of a project build directory and by default it is equal to value of buildroot. It
is optional parameter and if realbuildroot has different value from buildroot then buildroot
will be symlink to realbuildroot. Using realbuildroot makes sense mostly on linux where
‘/tmp’ is usually on tmpfs filesystem nowadays and it can used to make building in memory. Such a way
can improve speed of building. Note that on Windows OS the process of ZenMake needs to be started
with enabled “Create symbolic links” privilege and usual user doesn’t have a such privilege. Path can be
absolute or relative to the startdir. It is important to be able to remove the build directory safely, so it
should never be given as . or ...

16 Chapter 5. Build config

ZenMake Documentation, Release 0.11.0

5.4 project

A dict with some parameters for the project. Supported values:

name The name of the project. It’s name of the top-level startdir directory by default.

version The version of the project. It’s empty by default. It’s used as default value for ver-num
field if not empty.

5.5 general

A dict array with some general features. Supported values:

autoconfig Execute the command configure automatically in the command build if it’s
necessary. It’s True by default. Usually you don’t need to change this value.

monitor-files Set extra file paths to check changes in them. You can use additional files with
your buildconf file(s). For example it can be extra python module with some tools. But
in this case ZenMake doesn’t know about such files when it checks buildconf file(s) for
changes to detect if it must call command configure for feature autoconfig. You
can add such files to this variable and ZenMake will check them for changes as it does so
for regular buildconf file(s).

If paths contain spaces and all these paths are listed in one string then each such a path
must be in quotes.

hash-algo Set hash algorithm to use in ZenMake. It can be sha1 or md5. By default Zen-
Make uses sha1 algorithm to control changes of config/built files and for some other
things. Sha1 has much less collisions than md5 and that’s why it’s used by default. Mod-
ern CPUs often has support for this algorithm and sha1 show better or almost the same
performance than md5 in this cases. But in some cases md5 can be faster and you can set
here this variant. However, don’t expect big difference in performance of ZenMake. Also,
if a rare “FIPS compliant” build of Python is used it’s always sha1 anyway.

db-format Set format for internal ZenMake db/cache files. Use one of possible values: py,
pickle, msgpack.

The value py means text file with python syntax. It is not fastest format but it is human
readable one.

The value pickle means python pickle binary format. It has good performance and
python always supports this format.

The value msgpack means msgpack binary format by using python module msgpack.
Using of this format can decrease ZenMake overhead in building of some big projects be-
cause it has the best performance among all supported formats. If the package msgpack
doesn’t exist in the current system then the pickle value will be used. Note: ZenMake
doesn’t try to install package msgpack. This package must be installed in some other
way.

The default value is pickle.

provide-edep-targets Provide target files of external dependencies in the buildroot directory.
It is useful to run built files from the build directory without the need to use such a thing
as LD_LIBRARY_PATH for each dependency. Only existing and used target files are
provided. Static libraries are also ignored because they are not needed to run built files.
On Windows ZenMake copies these files while on other OS (Linux, MacOS, etc) it makes
symlinks.

5.4. project 17

ZenMake Documentation, Release 0.11.0

It’s False by default.

build-work-dir-name Set a name of work directory which is used mostly for object files
during compilation. This directory seperates resulting target files from other files in a
buildtype directory to avoid file/directory conflicts. Usually you don’t need to set this
parameter until some target name has conflict with default value of this parameter.

The default value is @bld.

5.6 cliopts

A dict array with default values for command line options. It can be any existing command line option
that ZenMake has. If you want to set an option for selected commands then you can set it in the format
of a dict where key is a name of specific command or special value ‘any’ which means any command. If
some command doesn’t have selected option then it will be ignored.

Example in YAML format:

cliopts:
verbose: 1
jobs : { build : 4 }
progress :

any: false
build: true

Note: Selected command here is a command that is used on command line. It means if you set an option
for the build command and zenmake calls the configure command before this command by itself
then this option will be applied for both configure and build commands. In other words it is like
you are running this command with this option on command line.

5.7 conditions

A dict with conditions for selectable parameters.

5.8 tasks

A dict with build tasks. Each task has own unique name and parameters. Name of task can be used
as dependency id for other build tasks. Also this name is used as a base for resulting target file name
if parameter target is not set in task parameters. In this variable you can set up build parameters
particularly for each build task. Example in YAML format:

tasks:
mylib :

some task parameters
myexe :

some task parameters
use : mylib

18 Chapter 5. Build config

ZenMake Documentation, Release 0.11.0

Note: Parameters in this variable can be overridden by parameters in buildtypes and/or byfilter.

Note: Name of a task cannot contain symbol :. You can use parameter target if you want to have this
symbol in resulting target file names.

5.9 buildtypes

A dict with build types like debug, release, debug-gcc and so on. Here is also a special value with
name default that is used to set default build type if nothing is specified. Names of these build types
are just names, they can be any name but not default. Also you should remember that these names are
used as directory names. So don’t use incorrect symbols if you don’t want a problem with it.

This variable can be empty or absent. In this case current buildtype is always just an empty string.

Possible parameters for each build type are described in task parameters.

Special value default must be a string with the name of one of the build types or a dict where keys
are supported name of the host operating system and values are strings with the names of one of the build
types. Special key ‘_’ or ‘no-match’ can be used in the default to define a value that will be used if the
name of the current host operating system is not found among the keys in the default.

Valid host operating system names: linux, windows, darwin, freebsd, openbsd, sunos,
cygwin, msys, riscos, atheos, os2, os2emx, hp-ux, hpux, aix, irix.

Note: Only linux, windows and darwin are tested.

Examples in YAML format:

buildtypes:
debug : { toolchain: auto-c++ }
debug-gcc : { toolchain: g++, cxxflags: -fPIC -O0 -g }
release-gcc : { toolchain: g++, cxxflags: -fPIC -O2 }
debug-clang : { toolchain: clang++, cxxflags: -fPIC -O0 -g }
release-clang: { toolchain: clang++, cxxflags: -fPIC -O2 }
debug-msvc : { toolchain: msvc, cxxflags: /Od /EHsc }
release-msvc : { toolchain: msvc, cxxflags: /O2 /EHsc }
default: debug

buildtypes:
debug:

toolchain.select:
default: g++
darwin: clang++
windows: msvc

cxxflags.select:
default : -O0 -g
msvc : /Od /EHsc

release:
toolchain.select:

default: g++
darwin: clang++

(continues on next page)

5.9. buildtypes 19

ZenMake Documentation, Release 0.11.0

(continued from previous page)

windows: msvc
cxxflags.select:

default : -O2
msvc : /O2 /EHsc

default: debug

buildtypes:
debug-gcc : { cxxflags: -O0 -g }
release-gcc : { cxxflags: -O2 }
debug-clang : { cxxflags: -O0 -g }
release-clang: { cxxflags: -O2 }
debug-msvc : { cxxflags: /Od /EHsc }
release-msvc : { cxxflags: /O2 /EHsc }
default:
_: debug-gcc
linux: debug-gcc
darwin: debug-clang
windows: debug-msvc

Note: Parameters in this variable override corresponding parameters in tasks and can be overridden by
parameters in byfilter.

5.10 toolchains

A dict with custom toolchain setups. It’s useful for simple cross builds for example, or for custom settings
for existing toolchains. Each value has unique name and parameters. Parameters are also dict with names
of environment variables and special name kind that is used to specify the type of toolchain/compiler.
Environment variables are usually such variables as CC, CXX, AR, etc that are used to specify name or
path to existing toolchain/compiler. Path can be absolute or relative to the startdir. Also such variables as
CFLAGS, CXXFLAGS, etc can be set here.

Names of toolchains from this parameter can be used as a value for the toolchain in task parameters.

Example in YAML format:

toolchains:
custom-g++:

kind : auto-c++
CXX : custom-toolchain/gccemu/g++
AR : custom-toolchain/gccemu/ar

custom-clang++:
kind : clang++
CXX : custom-toolchain/clangemu/clang++
AR : custom-toolchain/clangemu/llvm-ar

g++:
LINKFLAGS : -Wl,--as-needed

5.11 byfilter

This variable describes extra/alternative way to set up build tasks. It’s a list of dicts with attributes set and
for, not-for and/or if. Attributes for/not-for/if describe conditions for parameters in attribute

20 Chapter 5. Build config

ZenMake Documentation, Release 0.11.0

set, that is, a filter to set some build task parameters. The attribute for is like a if a and the attribute
not-for is like a if not b where a and b are some conditions. And they are like a if a and if
not b when both of them exist in the same item. The attribute not-for has higher priority in the case
of the same condition in the both of them.

Since v0.11 ZenMake supports if attribute where you can set a string with python like expression.

The for/not-for are dicts and if is an expression. In for/not-for/if you can use such variables
as dict keys in for/not-for and as keywords within an expression:

task Build task name or list of build task names. It can be existing task(s) from tasks or new
(only in for).

buildtype Build type or list of build types. It can be existing build type(s) from buildtypes or
new (only in for).

platform Name of a host platform/operating system or list of them. Valid values are the same
as for default in buildtypes.

The if is a real python expression with some builtin functions. You can use standard python operators as
‘(’, ‘)’, ‘and’, ‘or’, ‘not’, ‘==’, ‘!=’ and ‘in’. ZenMake supports a little set of extensions as well:

Name Description
true The same as python ‘True’.
false The same as python ‘False’.
startswith(str, prefix) Returns true if ‘str’ starts with the specified ‘prefix’.
endswith(str, prefix) Returns true if ‘str’ ends with the specified ‘suffix’.

The attribute set has value of the task parameters.

Other features:

• If some key parameter is not specified in for/not-for/if it means that this is for all possible
values of this kind of condition. For example if it has no task it means ‘for all existing tasks’.
Special word all (without any other parameters) can be used to indicate that current item must be
applied to all build tasks. Empty dict (i.e. {}) in for/not-for can be used for the same reason as
well.

• Variable ‘byfilter’ overrides all matched values defined in tasks and buildtypes.

• Items in set with the same names and the same conditions in for/not-for/if override items
defined before.

• If for/not-for and if are used for the same set then result will be the intersection of resulting
sets from for/not-for and if.

• When set is empty or not defined it does nothing.

Note: ZenMake applies every item in the byfilter in the order as they were written.

It’s possible to use byfilter without tasks and buildtypes.

Example in YAML format:

GCC_BASE_CXXFLAGS: -std=c++11 -fPIC

buildtypes:
debug-gcc : { cxxflags: $GCC_BASE_CXXFLAGS -O0 -g }
release-gcc : { cxxflags: $GCC_BASE_CXXFLAGS -O2 }

(continues on next page)

5.11. byfilter 21

ZenMake Documentation, Release 0.11.0

(continued from previous page)

debug-clang : { cxxflags: $GCC_BASE_CXXFLAGS -O0 -g }
release-clang: { cxxflags: $GCC_BASE_CXXFLAGS -O2 }
debug-msvc : { cxxflags: /Od /EHsc }
release-msvc : { cxxflags: /O2 /EHsc }
default:
_: debug-gcc
linux: debug-gcc
darwin: debug-clang
windows: debug-msvc

byfilter:
- for: all
set: { includes: '.', rpath : '.', }

- for: { task: shlib shlibmain }
set: { features: cxxshlib }

- for: { buildtype: debug-gcc release-gcc, platform: linux }
set:

toolchain: g++
linkflags: -Wl,--as-needed

- for: { buildtype: release-gcc }
not-for : { platform : windows }
set: { cxxflags: -fPIC -O3 }

- for: { buildtype: [debug-clang, release-clang], platform: linux darwin }
set: { toolchain: clang++ }

- if: endswith(buildtype, '-gcc') and platform == 'linux'
set:

toolchain: g++
linkflags: -Wl,--as-needed

- if: buildtype == 'release-gcc' and platform == 'linux'
set:

cxxflags: $GCC_BASE_CXXFLAGS -O3

- if: endswith(buildtype, '-clang') and platform in ('linux', 'darwin')
set:

toolchain: clang++

- if: endswith(buildtype, '-msvc') and platform == 'windows'
set:

toolchain: msvc

Note: Parameters in this variable override corresponding parameters in tasks and in buildtypes.

5.12 subdirs

This variable controls including buildconf files from other sub directories of the project.

• If it is list of paths then ZenMake will try to use this list as paths to sub directories with the buildconf

22 Chapter 5. Build config

ZenMake Documentation, Release 0.11.0

files and will use all found ones. Paths can be absolute or relative to the startdir.

• If it is an empty list or just absent at all then ZenMake will not try to use any sub directories of the
project to find buildconf files.

Example in Python format:

subdirs = [
'libs/core',
'libs/engine',
'main',

]

Example in YAML format:

subdirs:
- libs/core
- libs/engine
- main

See some details here.

5.13 edeps

A dict with configurations of external non-system dependencies. Each such a dependency has own unique
name which can be used in task parameter use.

See full description of parameters here. Description of external dependencies is here.

Note: More examples of buildconf files can be found in repository here.

5.13. edeps 23

https://github.com/pustotnik/zenmake/tree/master/demos

ZenMake Documentation, Release 0.11.0

24 Chapter 5. Build config

CHAPTER 6

Build config: task parameters

It’s a dict as a collection of build task parameters for a build task. This collection is used in tasks, buildtypes and
byfilter. And it’s core buildconf element.

Also see substitutions for string/text values.

6.1 features

It describes type of a build task. Can be one value or list of values. Supported values:

c Means that the task has a C code. Optional in most cases. Also it’s ‘lang’ feature for C
language.

cxx Means that the task has a C++ code. Optional in most cases. Also it’s ‘lang’ feature for
C++ language.

d Means that the task has a D code. Optional in most cases. Also it’s ‘lang’ feature for D
language.

fc Means that the task has a Fortran code. Optional in most cases. Also it’s ‘lang’ feature for
Fortran language.

asm Means that the task has an Assembler code. Optional in most cases. Also it’s ‘lang’
feature for Assembler language.

<lang>stlib Means that result of the task is a static library for the <lang> code. For example:
cstlib, cxxstlib, etc.

<lang>shlib Means that result of the task is a shared library for the <lang> code. For example:
cshlib, cxxshlib, etc.

<lang>program Means that result of the task is an executable file for the <lang> code. For
example: cprogram, cxxprogram, etc.

runcmd Means that the task has the run parameter and should run some command. It’s
optional because ZenMake detects this feature automatically by presence of the run in

25

ZenMake Documentation, Release 0.11.0

task parameters. You need to set it explicitly only if you want to try to run <lang>program
task without parameter run.

test Means that the task is a test. More details about tests are here. It is not needed to add
runcmd to this feature because ZenMake adds runcmd itself if necessary.

qt5 Means that the task has Qt5 code. More details are here.

Some features can be mixed. For example cxxprogram can be mixed with cxx for C++ build tasks
but it’s not necessary because ZenMake adds cxx for cxxprogram itself. The cxxshlib feature
cannot be mixed for example with the cxxprogram in one build task because they are different types of
build task targets. Using of such features as c or cxx doesn’t make sense without *stlib/*shlib/*program
features in most cases. The runcmd and test features can be mixed with any feature.

Examples in YAML format:

features : cprogram
features : cxxshlib
features : cxxprogram runcmd
features : cxxprogram test

Examples in Python format:

'features' : 'cprogram'
'features' : 'cxxshlib'
'features' : 'cxxprogram runcmd'
'features' : 'cxxprogram test'

6.2 target

Name of resulting file. The target will have different extension and name depending on the platform but
you don’t need to declare this difference explicitly. It will be generated automatically. For example the
sample for *shlib task will be converted into sample.dll on Windows and into libsample.so
on Linux. By default it’s equal to the name of the build task. So in most cases it is not needed to be set
explicitly.

It’s possible to use selectable parameters to set this parameter.

6.3 source

One or more source files for compiler/toolchain/toolkit. It can be:

• a string with one or more paths separated by space

• a dict, description see below

• a list of items where each item is a string with one or more paths or a dict

The dict type is used for ant_glob Waf function. Format of patterns for ant_glob can be found
here https://waf.io/book/. Most significant details from there:

• Patterns may contain wildcards such as * or ?, but they are Ant patterns, not regular expressions.

• The symbol ** enable recursion. Complex folder hierarchies may take a lot of time, so use with
care.

• The ‘..’ sequence does not represent the parent directory.

26 Chapter 6. Build config: task parameters

https://waf.io
https://waf.io/book/
https://ant.apache.org/manual/dirtasks.html

ZenMake Documentation, Release 0.11.0

So such a dict can contain fields:

incl Ant pattern or list of patterns to include, required field.

excl Ant pattern or list of patterns to exclude, optional field.

ignorecase Ignore case while matching (False by default), optional field.

startdir Start directory for patterns, optional field. It must be relative to the startdir
or an absolute path. By default it’s ‘.’, that is, it’s equal to startdir.

ZenMake always adds several patterns to exclude files for any ant pattern. These patterns include Default
Excludes from Ant patterns and some additional patterns like **/*.swp.

There is simplified form of ant patterns using: if string value contains ‘*’ or ‘?’ it will be converted into
dict form to use patterns. See examples below.

Any path or pattern should be relative to the startdir. But for pattern (in dict) can be used custom
startdir parameter.

Note: If paths contain spaces and all these paths are listed in one string then each such a path must be in
quotes.

YAML: You can write a string without quotes (as a plain scalar) in many cases but there are some special
symbols which cannot be used at the beginning without quotes, for example * and ?<space>. So a
value like **/*.cpp must be always in qoutes (' or ").

See details here: https://www.yaml.info/learn/quote.html.

Examples in YAML format:

just one file
source : test.cpp

list of two files
source : main.c about.c
or
source : [main.c, about.c]

get all *.cpp files in the 'startdir' recursively
source : { incl: '**/*.cpp' }
or
source :

incl: '**/*.cpp'
or (shortest record with the same result)
source : '**/*.cpp'

get all *.c and *.cpp files in the 'startdir' recursively
source : { incl: '**/*.c **/*.cpp' }
or (shorter record with the same result)
source : '**/*.c **/*.cpp'

get all *.cpp files in the 'startdir'/mylib recursively
source : mylib/**/*.cpp

get all *.cpp files in the 'startdir'/src recursively
but don't include files according pattern 'src/extra*'
source :

incl: src/**/*.cpp

(continues on next page)

6.3. source 27

https://ant.apache.org/manual/dirtasks.html
https://www.yaml.info/learn/quote.html

ZenMake Documentation, Release 0.11.0

(continued from previous page)

excl: src/extra*

get all *.c files in the 'src' and in '../others' recursively
source :

- src/**/*.c
- incl: '**/*.c'

startdir: ../others

pattern with space, it's necessary to use both types of quotes here:
source : '"my prog/**/*.c"'

two file paths with spaces
source : '"my shlib/my util.c" "my shlib/my util2.c"'

Examples in python format:

just one file
'source' : 'test.cpp'

list of two files
'source' : 'main.c about.c'
'source' : ['main.c', 'about.c'] # the same result

get all *.cpp files in the 'startdir' recursively
'source' : dict(incl = '**/*.cpp')
or
'source' : { 'incl': '**/*.cpp' }
or (shortest record with the same result)
'source' : '**/*.cpp'

get all *.c and *.cpp files in the 'startdir' recursively
'source' : { 'incl': ['**/*.c', '**/*.cpp'] }
or (shorter record with the same result)
'source' : ['**/*.c', '**/*.cpp']

get all *.cpp files in the 'startdir'/mylib recursively
'source' : 'mylib/**/*.cpp'

get all *.cpp files in the 'startdir'/src recursively
but don't include files according pattern 'src/extra*'
'source' : dict(incl = 'src/**/*.cpp', excl = 'src/extra*')

get all *.c files in the 'src' and in '../others' recursively
'source' : [

'src/**/*.c',
{ 'incl': '**/*.c', 'startdir' : '../others' },

]

pattern with space:
'source' : '"my prog/**/*.c"'

two file paths with spaces
'source' : '"my shlib/my util.c" "my shlib/my util2.c"'

It’s possible to use selectable parameters to set this parameter.

28 Chapter 6. Build config: task parameters

ZenMake Documentation, Release 0.11.0

6.4 includes

Include paths are used by the C/C++/D/Fortran compilers for finding headers/files. Paths should be rela-
tive to startdir or absolute. But last variant is not recommended.

If paths contain spaces and all these paths are listed in one string then each such a path must be in quotes.

Examples in YAML format:

includes : myinclude
includes : include myinclude
includes : [include, myinclude]

It’s possible to use selectable parameters to set this parameter.

This parameter can be exported.

6.5 toolchain

Name of toolchain/compiler to use in the task. It can be any system compiler that is supported by ZenMake
or a toolchain from custom toolchains. There are also the special names for autodetecting in format
auto-* where * is a ‘lang’ feature for programming language, for example auto-c, auto-c++, etc.

Known names for C: auto-c, gcc, clang, msvc, icc, xlc, suncc, irixcc.
Known names for C++: auto-c++, g++, clang++, msvc, icpc, xlc++, sunc++.
Known names for D: auto-d, ldc2, gdc, dmd.
Known names for Fortran: auto-fc, gfortran, ifort.
Known names for Assembler: auto-asm, gas, nasm.

Note: If you don’t set toolchain then ZenMake will try to set auto-* itself according values in
features.

In some rare cases this parameter can contain more than one value as a string with values separated by
space or as list. For example, for case when C and Assembler files are used in one task, it can be "gcc
gas".

If toolchain from custom toolchains or some system toolchain contain spaces in their names and all these
toolchains are listed in one string then each such a toolchain must be in quotes.

It’s possible to use selectable parameters to set this parameter.

6.6 cflags

One or more compiler flags for C.

It’s possible to use selectable parameters to set this parameter.

Also this parameter can be exported.

6.4. includes 29

ZenMake Documentation, Release 0.11.0

6.7 cxxflags

One or more compiler flags for C++.

It’s possible to use selectable parameters to set this parameter.

Also this parameter can be exported.

6.8 dflags

One or more compiler flags for D.

It’s possible to use selectable parameters to set this parameter.

Also this parameter can be exported.

6.9 fcflags

One or more compiler flags for Fortran.

It’s possible to use selectable parameters to set this parameter.

Also this parameter can be exported.

6.10 asflags

One or more compiler flags for Assembler.

It’s possible to use selectable parameters to set this parameter.

Also this parameter can be exported.

6.11 cppflags

One or more compiler flags added at the end of compilation commands for C/C++.

It’s possible to use selectable parameters to set this parameter.

Also this parameter can be exported.

6.12 linkflags

One or more linker flags for C/C++/D/Fortran.

It’s possible to use selectable parameters to set this parameter.

Also this parameter can be exported.

30 Chapter 6. Build config: task parameters

ZenMake Documentation, Release 0.11.0

6.13 ldflags

One or more linker flags for C/C++/D/Fortran at the end of the link command.

It’s possible to use selectable parameters to set this parameter.

Also this parameter can be exported.

6.14 aslinkflags

One or more linker flags for Assembler.

It’s possible to use selectable parameters to set this parameter.

Also this parameter can be exported.

6.15 arflags

Flags to give the archive-maintaining program.

It’s possible to use selectable parameters to set this parameter.

Also this parameter can be exported.

6.16 defines

One or more defines for C/C++/Assembler/Fortran.

Examples in YAML format:

defines : MYDEFINE

defines : [ABC=1, DOIT]

defines :
- ABC=1
- DOIT

defines : 'ABC=1 DOIT AAA="some long string"'

Examples in Python format:

'defines' : 'MYDEFINE'

'defines' : ['ABC=1', 'DOIT']

'defines' : 'ABC=1 DOIT AAA="some long string"'

It’s possible to use selectable parameters to set this parameter.

Also this parameter can be exported.

6.13. ldflags 31

ZenMake Documentation, Release 0.11.0

6.17 use

This attribute enables the link against libraries (static or shared). It can be used for local libraries
from other tasks or to declare dependencies between build tasks. Also it can be used to declare using
of external dependencies. For external dependencies the format of any dependency in use must be:
dependency-name:target-reference-name.

It can contain one or more the other task names.

If a task name contain spaces and all these names are listed in one string then each such a name must be
in quotes.

Examples in YAML format:

use : util
use : util mylib
use : [util, mylib]
use : 'util "my lib"'
use : ['util', 'my lib']
use : util mylib someproject:somelib

Examples in Python format:

'use' : 'util'
'use' : 'util mylib'
'use' : ['util', 'mylib']
'use' : 'util "my lib"'
'use' : ['util', 'my lib']
'use' : 'util mylib someproject:somelib'

It can be used to specify libraries of qt5 as well. More details are here.

It’s possible to use selectable parameters to set this parameter.

6.18 libs

One or more names of existing shared libraries as dependencies, without prefix or extension. Usually it’s
used to set system libraries.

If you use this parameter to specify non-system shared libraries for some task you may need to specify the
same libraries for all other tasks which depend on the current task. For example, you set library ‘mylib’
to the task A but the task B has parameter use with ‘A’, then it’s recommended to add ‘mylib’ to the
parameter libs for the task B. Otherwise you can get link error ... undefined reference to
... or something like that. Some other ways to solve this problem include using environment variable
LD_LIBRARY_PATH or changing of /etc/ld.so.conf file. But usually last method is not recommended.

Example in YAML format:

libs : m rt

Example in Python format:

'libs' : 'm rt'

It’s possible to use selectable parameters to set this parameter.

32 Chapter 6. Build config: task parameters

ZenMake Documentation, Release 0.11.0

6.19 libpath

One or more additional paths to find libraries. Usually you don’t need to set it.

If paths contain spaces and all these paths are listed in one string then each such a path must be in quotes.

Paths should be absolute or relative to startdir.

Examples in YAML format:

libpath : /local/lib
libpath : '/local/lib "my path"' # in case of spaces in a path

Examples in Python format:

'libpath' : '/local/lib'
'libpath' : '/local/lib "my path"' # in case of spaces in a path

It’s possible to use selectable parameters to set this parameter.

Also this parameter can be exported.

6.20 monitlibs

One or more names from libs to monitor changes.

For example, a project has used some system library ‘superlib’ and once this library was upgraded by
a system package manager. After that the building of the project will not make a relink with the new
version of ‘superlib’ if no changes in the project which can trigger such a relink. Usually it is not a
problem because a project is changed much more frequently than upgrading of system libraries during
development.

Any names not from libs are ignored.

It can be True or False as well. If it is True then value of libs is used. If it is False then it means an
empty list.

By default it’s False.

Using of this parameter can slow down a building of some projects with a lot of values in this parameter.
ZenMake uses sha1/md5 hashes to check changes of every library file.

It’s possible to use selectable parameters to set this parameter.

6.21 stlibs

The same as libs but for static libraries.

It’s possible to use selectable parameters to set this parameter.

6.22 stlibpath

The same as libpath but for static libraries.

It’s possible to use selectable parameters to set this parameter.

6.19. libpath 33

ZenMake Documentation, Release 0.11.0

Also this parameter can be exported.

6.23 monitstlibs

The same as monitlibs but for static libraries. It means it’s affected by parameter stlibs.

It’s possible to use selectable parameters variables to set this parameter.

6.24 moc

One or more header files (.h) with C++ class declarations with Q_OBJECT. These files are handled with
Qt Meta-Object Compiler, moc. Format for this parameter is the same as for the source parameter.

You can specify header files without Q_OBJECT here because ZenMake filters such files by itself. So
you can specify just all .h files of your directory with header files if you wish.

It can be used only for tasks with qt5 in features.

6.25 rclangprefix

Value of qresource prefix in generated .qrc file for a qt5 task. When .ts files are specified in the
source parameter ZenMake compiles these files into .qm files. If you set the rclangprefix parameter
ZenMake will insert all compiled .qm files in .qrc file to embed .qm files as internal binary resourses inside
compiled task target file. And the value of this parameter can be used in the QTranslator::load method in
the ‘directory’ argument in your Qt5 code.

The bld-langprefix, unique-qmpaths and install-langdir parameters are ignored if the rclangprefix is
set.

It can be used only for tasks with qt5 in features.

6.26 langdir-defname

Name of a define to set for your Qt5 code to detect current directory with compiled .qm files to use in the
QTranslator::load method. When .ts files are specified in the source parameter ZenMake compiles these
files into .qm files. But when you use the install command ZenMake copies these files from build
directory into install directory. So during regular building and for installed application the directory with
.qm files are different. Value of the define with the name from the langdir-defname is the install
directory of .qm files for the install command and the build directory of .qm files in other cases.

This parameter is ignored if rclangprefix is set.

It can be used only for tasks with qt5 in features.

6.27 bld-langprefix

Set build directory path prefix for compiled .qm files. It is relative to buildtypedir and defaults to
@translations. Usually you don’t need to use this parameter.

This parameter is ignored if rclangprefix is set.

34 Chapter 6. Build config: task parameters

ZenMake Documentation, Release 0.11.0

It can be used only for tasks with qt5 in features.

6.28 unique-qmpaths

Make unique file paths for compiled .qm files by adding name of current buld task by the
pattern: $(buildtypedir)/<bld-langprefix>/<task name>_<original .qm file
name> where buildtypedir is the built-in variable. Usually you don’t need to use this parameter.

This parameter is ignored if rclangprefix is set.

It can be used only for tasks with qt5 in features.

6.29 rpath

One or more paths to hard-code into the binary during linking time. It’s ignored on platforms that do not
support it.

If paths contain spaces and all these paths are listed in one string then each such a path must be in quotes.

It’s possible to use selectable parameters to set this parameter.

6.30 ver-num

Enforce version numbering on shared libraries. It can be used with *shlib features for example. It can
be ignored on platforms that do not support it.

It’s possible to use selectable parameters to set this parameter.

6.31 run

A dict with parameters to run something in the task. It’ used with task features runcmd and test. It
can be also just a string or a python function (for buildconf.py only). In this case it’s the same as using
dict with one parameter cmd.

cmd Command line to run. It can be any suitable command line. For convenience special
built-in substitution variables src and tgt can be used here. The tgt variable contains
string with the absolute path to resulting target file of the current task. And the src
contains string with all source files of the task.

Environment variables also can be used here but see bash-like substitutions.

For python variant of buildconf it can be python function as well. In this case such a
function gets one argument as a python dict with parameters:

taskname Name of current build task

startdir Current startdir

buildroot Root directory for building

buildtype Current buildtype

target Absolute path to resulting target. It may not be existing.

6.28. unique-qmpaths 35

ZenMake Documentation, Release 0.11.0

waftask Object of Waf class Task. It’s for advanced use.

cwd Working directory where to run cmd. By default it’s build directory for current buildtype.
Path can be absolute or relative to the startdir.

env Environment variables for cmd. It’s a dict where each key is a name of variable and
value is a value of env variable.

timeout Timeout for cmd in seconds. It works only when ZenMake is run with python 3. By
default there is no timeout.

shell If shell is True, the specified command will be executed through the shell. By default
to avoid some common problems it is True. But in many cases it’s safe to set False. In
this case it avoids some overhead of using shell. In some cases it can be set to True by
ZenMake/Waf even though you set it to False.

repeat Just amount of running of cmd. It’s mostly for tests. By default it’s 1.

If current task has parameter run with empty features or with only runcmd in the features then
it is standalone runcmd task.

If current task is not standalone runcmd task then command from parameter run will be run after compi-
lation and linking. If you want to have a command that will be called before compilation and linking you
can make another standalone runcmd task and specify this new task in the parameter use of the current
task.

By default ZenMake expects that any build task produces a target file and if it doesn’t find this file when
the task is finished it will throw an error. And it is true for standalone runcmd tasks also. If you want to
create standalone runcmd task which doesn’t produce target file you can set task parameter target to an
empty string.

Examples in YAML format:

echo:
run: "echo 'say hello'"
target: ''

test.py:
run:

cmd : python tests/test.py
cwd : .
env : { JUST_ENV_VAR: qwerty }
shell : false

target: ''
configure :

- do: find-program
names: python

shlib-test:
features : cxxprogram test
...
run:

cmd : '$(tgt) a b c'
env : { ENV_VAR1: '111', ENV_VAR2: 'false' }
repeat : 2
timeout : 10 # in seconds
shell : false

foo.luac:
source : foo.lua

(continues on next page)

36 Chapter 6. Build config: task parameters

ZenMake Documentation, Release 0.11.0

(continued from previous page)

configure : [{ do: find-program, names: luac }]
run: '${LUAC} -s -o $(tgt) $(src)'

Examples in Python format:

'echo' : {
'run' : "echo 'say hello'",
'target': '',

},

'test.py' : {
'run' : {

'cmd' : 'python tests/test.py',
'cwd' : '.',
'env' : { 'JUST_ENV_VAR' : 'qwerty', },
'shell' : False,

},
'target': '',
'configure' : [dict(do = 'find-program', names = 'python'),]

},

'shlib-test' : {
'features' : 'cxxprogram test',
...
'run' : {

'cmd' : '$(tgt) a b c',
'env' : { 'ENV_VAR1' : '111', 'ENV_VAR2' : 'false'},
'repeat' : 2,
'timeout' : 10, # in seconds, Python 3 only
'shell' : False,

},
},

'foo.luac' : {
'source' : 'foo.lua',
'configure' : [dict(do = 'find-program', names = 'luac'),],
'run': '${LUAC} -s -o $(tgt) $(src)',

},

It’s possible to use selectable parameters to set this parameter.

6.32 configure

A list of configuration actions (configuration checks and others). Details are here. These actions are called
on configure step (in command configure).

It’s possible to use selectable parameters to set this parameter.

Results of these configuration actions can be exported with the name config-results.

6.33 export-<param> / export

Some task parameters can be exported to all dependent build tasks.

6.32. configure 37

ZenMake Documentation, Release 0.11.0

There two forms: export-<param> and export.

In first form <param> is the name of the exported task parameter. The boolean True/False value or
specific valid value to the <param> can be used to export. If value is True then ZenMake exports the
value of the parameter from current task to all dependent build tasks. If value is False then ZenMake
exports nothing.

Supported names: includes, defines, config-results, libpath, stlibpath, moc and all
*flags.

But the parameter export-config-results accepts boolean True/False only value.

In second form it must be string or list with the names of parameters to export. Second form is simplified
form of the first form when all values are True. And this form cannot be used to set specific value to
export.

Note: By default ZenMake exports nothing (all values are False).

Exporting values are inserted in the beginning of the current parameter values in dependent tasks. It was
made to have ability to overwrite parent values. For example, task A has defines with value AAA=q
and task B depends on task A and has defineswith value BBB=v. So if task A has export-defines
with True, then actual value of defines in task B will be AAA=q BBB=v.

Examples in YAML format:

export all includes from current task
export-includes: true
the same result:
export: includes

export all includes and defines from current task
export-includes: true
export-defines: true
the same result:
export: includes defines

export specific includes, value of parameter 'includes' from current
task is not used
export-includes: incl1 incl2

export specific defines, value of parameter 'defines' from current
task is not used
export-defines : 'ABC=1 DOIT AAA="some long string"'

export results of all configuration actions from current task
export-config-results: true

export all includes, defines and results of configuration actions
export: includes defines config-results

Specific remarks:

includes If specified paths contain spaces and all these paths are listed in one string
then each such a path must be in quotes.

defines Defines from configuration actions are not exported. Use
export-config-results or export with config-results for
that.

38 Chapter 6. Build config: task parameters

ZenMake Documentation, Release 0.11.0

It’s possible to use selectable parameters (in strings) to set this parameter.

6.34 install-path

String representing the installation directory for the task target file. It is used in the install and
uninstall commands. This path must be absolute. To disable installation, set it to False or to empty
string. If it’s absent then built-in prefix, bindir and libdir variables will be used to detect path.
You can use any built-in substitution variable including prefix, bindir and libdir here like this:

Example in YAML format:

install-path : '$(prefix)/bin'

This parameter is false for standalone runcmd tasks by default.

It’s possible to use selectable parameters to set this parameter.

6.35 install-files

A list of additional files to install. Each item in this list must be a dict with following parameters:

do It is what to do and it can be copy, copy-as or symlink. The copy value means
copying specified files to a directory from the dst. The copy-as value means copying
one specified file to a path from the dst so you can use a difference file name. The
symlink value means creation of symlink. It’s for POSIX platforms only and does
nothing on MS Windows.

You may not set this parameter in some cases. If this parameter is absent:

• It’s symlink if parameter symlink exists in current dict.

• It’s copy in other cases.

src If do is copy then rules for this parameter are the same as for source but with one addition:
you can specify one or more paths to directory if you don’t use any ant pattern. In this
case all files from specified directory will be copied recursively with directories hierarchy.

If do is copy-as, it must be one path to a file. And it must be relative to the startdir or
an absolute path.

If do is symlink, it must be one path to a file. Created symbolic link will point to this
path. Also it must be relative to the startdir or an absolute path.

dst If do is copy then it must be a path to a directory. If do is copy-as, it must be one path
to a file. If do is symlink, this parameter cannot be used. See parameter symlink.

It must be relative to the startdir or an absolute path.

Any path here will have value of destdir at the beginning if this destdir is set to
non-empty value. This destdir can be set from command line argument --destdir
or from environment variable DESTDIR and it is not set by default.

symlink It is like dst for copy-as but for creating a symlink. This parameter can be used
only if do is symlink.

It must be relative to the startdir or an absolute path.

6.34. install-path 39

ZenMake Documentation, Release 0.11.0

chmod Change file mode bits. It’s for POSIX platforms only and does nothing on MS Win-
dows. And it cannot be used for do = symlink.

It must be integer or string. If it is an integer it must be correct value for python function
os.chmod. For example: 0o755.

If it is a string then value will be converted to integer as octal representation of an integer.
For example, ‘755’ will be converted to 493 (it’s 755 in octal representation).

By default it is 0o644.

user Change file owner. It’s for POSIX platforms only and does nothing on MS Windows. It
must be a name of existing user. It is not set by default and the value from original file
will be used.

group Change file user’s group. It’s for POSIX platforms only and does nothing on MS
Windows. It must be a name of existing user’s group. It is not set by default and the
value from original file will be used.

follow-symlinks Follow symlinks from src if do is copy or copy-as. If it is false, sym-
bolic links in the paths from src are represented as symbolic links in the dst, but the
metadata of the original links is NOT copied; if true or omitted, the contents and metadata
of the linked files are copied to the new destination.

It’s true by default.

relative This parameter can be used only if do is symlink. If it is true, relative symlink will
created.

It’s false by default.

Some examples can be found in the directory ‘mixed/01-cshlib-cxxprogram’ in the repository here.

It’s possible to use selectable parameters to set this parameter.

6.36 install-langdir

Installation directory for .qm files. It defaults to $(appdatadir)/translationswhere appdatadir
is the built-in variable.

This parameter is ignored if rclangprefix is set.

It can be used only for tasks with qt5 in features.

6.37 normalize-target-name

Convert target name to ensure the name is suitable for file name and has not any potential problems. It
replaces all space symbols for example. Experimental. By default it is False.

It’s possible to use selectable parameters to set this parameter.

6.38 enabled

If it’s False then current task will not be used at all. By default it is True.

40 Chapter 6. Build config: task parameters

https://github.com/pustotnik/zenmake/tree/master/demos

ZenMake Documentation, Release 0.11.0

It makes sense mostly to use with selectable parameters or with byfilter. With this parameter you can
make a build task which can be used, for example, on Linux only or for specific toolchain or with another
condition.

6.39 group-dependent-tasks

Although runtime jobs for the tasks may be executed in parallel, some preparation is made before this in
one thread. It includes, for example, analyzing of the task dependencies and file paths in source. Such
list of tasks is called build group and, by default, it’s only one build group for each project which uses
ZenMake. If this parameter is true, ZenMake creates a new build group for all other dependent tasks
and preparation for these dependent tasks will be run only when all jobs for current task, including all
dependencies, are done.

For example, if some task produces source files (*.c, *.cpp, etc) that don’t exist at the time of such a
preparation, you can get a problem because ZenMake cannot find not existing files. It is not a problem
if such a file is declared in target and then this file is specified without use of ant pattern in source of
dependent tasks. In other cases you can solve the problem by setting this parameter to True for a task
which produces these source files.

By default it is False. Don’t set it to True without reasons because it can slow building down.

6.40 objfile-index

Counter for the object file extension. By default it’s calculated automatically as unique index number for
each build task.

If you set this for one task but not for others in the same project and your index number is matched with
one of automatic generated indexes then it can cause compilation errors if different tasks use the same
files in parameter source.

Also you can set the same value for the all build tasks and often it’s not a problem while different tasks
use the different files in parameter source.

Set this parameter only if you know what you do.

It’s possible to use selectable parameters to set this parameter.

Note: More examples of buildconf files can be found in repository here.

6.39. group-dependent-tasks 41

https://github.com/pustotnik/zenmake/tree/master/demos

ZenMake Documentation, Release 0.11.0

42 Chapter 6. Build config: task parameters

CHAPTER 7

Build config: selectable parameters

ZenMake provides ability to select values for parameters in task params depending on some conditions. This feature
of ZenMake is similar to Configurable attributes from Bazel build system and main idea was borrowed from that
system. But implementation is different.

It can be used for selecting different source files, includes, compiler flags and others on different platforms, different
toolchains, etc.

Example in YAML format:

tasks:
...

conditions:
windows-msvc:

platform: windows
toolchain: msvc

buildtypes:
debug: {}
release:

cxxflags.select:
windows-msvc: /O2
default: -O2

Example in Python format:

tasks = {
...

}

conditions = {
'windows-msvc' : {

'platform' : 'windows',
'toolchain' : 'msvc',

},
(continues on next page)

43

ZenMake Documentation, Release 0.11.0

(continued from previous page)

}

buildtypes = {
'debug' : {
},
'release' : {

'cxxflags.select' : {
'windows-msvc': '/O2',
'default': '-O2',

},
},

}

In this example for build type ‘release’ we set value ‘/O2’ to ‘cxxflags’ if toolchain ‘msvc’ is used on MS Windows
and set ‘-02’ for all other cases.

This method can be used for any parameter in task params excluding features in the form:

YAML format:

<parameter name>.select:
<condition name1>: <value>
<condition name2>: <value>
...
default: <value>

Python format:

'<parameter name>.select' : {
'<condition name1>' : <value>,
'<condition name2>' : <value>,
...
'default' : <value>,

}

A <parameter name> here is a parameter from task params. Examples: ‘toolchain.select’, ‘source.select’, ‘use.select’,
etc.

Each condition name must refer to a key in conditions or to one of built-in conditions (see below). There is also special
optional key default wich means default value if none of the conditions has been selected. If the key default
doen’t exist then ZenMake tries to use the value of <parameter name> if it exists. If none of the conditions has been
selected and no default value for the parameter then this parameter will not be used.

Keys in conditions are just strings which consist of latin characters, digits and symbols ‘+’, ‘-’, ‘_’ . A value for each
condition is a dict with one or more such parameters:

platform Selected platform like ‘linux’, ‘windows’, ‘darwin’, etc. Valid values are the same
as for default in the buildtypes.

It can be one value or list of values or string with more than one value separated by spaces
like this: ‘linux windows’.

host-os Selected basic name of a host operating system. It is almost the same as the
platform parameter but for the MSYS2 and cygwin platforms it is always ‘windows’
and for the darwin platform it is ‘macos’.

distro Name of a Linux distribution like ‘debian’, ‘fedora’, etc. This name is empty string for
other operating systems.

44 Chapter 7. Build config: selectable parameters

ZenMake Documentation, Release 0.11.0

cpu-arch Selected current CPU architecture. Actual it’s a result of the python function plat-
form.machine() See https://docs.python.org/library/platform.html. Some possible values
are: arm, i386, i686, x86_64, AMD64. Real value depends on a platform. For example,
on Windows you can get AMD64 while on Linux you gets x86_64 on the same host.

Current value can be obtained also with the command zenmake sysinfo.

It can be one value or list of values or string with more than one value separated by spaces
like this: ‘i686 x86_64’.

toolchain Selected/detected toolchain.

It can be one value or list of values or string with more than one value separated by spaces
like this: ‘gcc clang’.

task Selected build task name.

It can be one value or list of values or string with more than one value separated by spaces
like this: ‘mylib myprogram’.

buildtype Selected buildtype.

It can be one value or list of values or string with more than one value separated by spaces
like this: ‘debug release’.

env Check system environment variables. It’s a dict of pairs <variable> : <value>.

Example in YAML format:

conditions:
my-env:

env:
TEST: 'true' # use 'true' as a string
CXX: gcc

Example in Python format:

conditions = {
'my-env' : {

'env' : {
'TEST' : 'true',
'CXX' : 'gcc',

}
},

}

If a parameter in a condition contains more than one value then any of these values will fulfill selected condition.
It means if some condition, for example, has platform which contains 'linux windows' without other pa-
rameters then this condition will be selected on any of these platforms (on GNU/Linux and on MS Windows). But
with parameter env the situation is different. This parameter can contain more than one environment variable and
a condition will be selected only when all of these variables are equal to existing variables from the system environ-
ment. If you want to have condition to select by any of such variables you can do it by making different conditions in
conditions.

Note: There is a constraint for toolchain.select - it’s not possible to use a condition with the ‘toolchain’
parameter inside toolchain.select.

Only one record from *.select for each parameter can be selected for each task during configuring but a condition
name in *.select can be string with more than one name from conditions. Such names can be used with ‘and’,

45

https://docs.python.org/library/platform.html

ZenMake Documentation, Release 0.11.0

‘or’, ‘not’ and ‘()’ to form different conditions in *.select.

Example in YAML format:

conditions:
linux:

platform: linux
g++:

toolchain: g++

buildtypes:
debug: {}
release:

cxxflags.select:
will be selected only on linux with selected/detected toolchain g++
linux and g++: -Ofast
will be selected in all other cases
default: -O2

Example in Python format:

conditions = {
'linux' : {

'platform' : 'linux',
},
'g++' : {

'toolchain' : 'g++',
},

}

buildtypes = {
'debug' : {
},
'release' : {

'cxxflags.select' : {
will be selected only on linux with selected/detected toolchain g++
'linux and g++': '-Ofast',
will be selected in all other cases
'default': '-O2',

},
},

}

For convenience there are ready to use built-in conditions for known platforms and supported toolchains. So in example
above the conditions variable is not needed at all because conditions with names linux and g++ already exist:

in YAML format:

no declaration of conditions

buildtypes:
debug: {}
release:

cxxflags.select:
will be selected only on linux with selected/detected toolchain g++
linux and g++: -Ofast
will be selected in all other cases
default: -O2

46 Chapter 7. Build config: selectable parameters

ZenMake Documentation, Release 0.11.0

in Python format:

no declaration of conditions

buildtypes = {
'debug' : {
},
'release' : {

'cxxflags.select' : {
will be selected only on linux with selected/detected toolchain g++
'linux and g++': '-Ofast',
will be selected in all other cases
'default': '-O2',

},
},

}

Also you can use built-in conditions for supported buildtypes. But if any name of supported buildtype is the same
as one of known platforms or supported toolchains then such a buildtype cannot be used as a built-in condition. For
example, you may want to make/use the buildtype ‘linux’ and it will be possible but you have to declare a different
name to use it in conditions in this case because the ‘linux’ value is one of known platforms.

There is one detail about built-in conditions for toolchains - only toolchains supported for current build tasks can be
used. ZenMake detects them from all features of all existing build tasks in current project during configuring.
For example, if tasks exist for C language only then supported toolchains for all other languages cannot be used as a
built-in condition.

If you declare condition in conditions with the same name of a built-in condition then your condition will be used
instead of that built-in condition.

47

ZenMake Documentation, Release 0.11.0

48 Chapter 7. Build config: selectable parameters

CHAPTER 8

Build config: edeps

The config parameter edeps is a dict with configurations of external non-system dependencies. General description
of external dependencies is here.

Each such a dependency can have own unique name and parameters:

8.1 rootdir

A path to the root of the dependency project. It should be path to directory with the build script of the
dependency project. This path can be relative to the startdir or absolute.

8.2 targets

A dict with descriptions of targets of the dependency project. Each target has a reference name which can
be in use in format dependency-name:target-reference-name and parameters:

dir A path with the current target file. Usually it’s some build directory. This path can be
relative to the startdir or absolute.

type It’s type of the target file. This type has effects to the link of the build tasks and some
other things. Supported types:

stlib The target file is a static library.

shlib The target file is a shared library.

program The target file is an executable file.

file The target file is any file.

name It is a base name of the target file which is used for detecting of resulting target file
name depending on destination operating system, selected toolchain, value of type, etc.

If it’s not set the target reference name is used.

49

ZenMake Documentation, Release 0.11.0

ver-num It’s a version number for the target file if it is a shared library. It can have effect on
resulting target file name.

fname It’s a real file name of the target. Usually it’s detected by ZenMake from other pa-
rameters but you can set it manually but it’s not recommended until you really need it. If
parameter type is equal to file the value of this parameter is always equal to value of
parameter name by default.

Example in YAML format for non-ZenMake dependency:

targets:
'shared-lib' and 'static-lib' are target reference names
shared-lib:

dir : ../foo-lib/_build_/debug
type: shlib
name: fooutil

static-lib:
dir : ../foo-lib/_build_/debug
type: stlib
name: fooutil

Example in Python format for non-ZenMake dependency:

'targets': {
'shared-lib' and 'static-lib' are target reference names
'shared-lib' : {

'dir' : '../foo-lib/_build_/debug',
'type': 'shlib',
'name': 'fooutil',

},
'static-lib' : {

'dir' : '../foo-lib/_build_/debug',
'type': 'stlib',
'name': 'fooutil',

},
},

8.3 export-includes

A list of paths with ‘includes’ for C/C++/D/Fortran compilers to export from the dependency project for
all build tasks which depend on the current dependency. Paths should be relative to the startdir or absolute
but last variant is not recommended.

If paths contain spaces and all these paths are listed in one string then each such a path must be in quotes.

8.4 rules

A dict with descriptions of rules to produce targets files of dependency. Each rule has own reserved name
and parameters to run. The rule names that allowed to use are: configure, build, test, clean,
install, uninstall.

The parameters for each rule can be a string with a command line to run or a dict with attributes:

cmd A command line to run. It can be any suitable command line.

50 Chapter 8. Build config: edeps

ZenMake Documentation, Release 0.11.0

cwd A working directory where to run cmd. By default it’s the rootdir. This path can be
relative to the startdir or absolute.

env Environment variables for cmd. It’s a dict where each key is a name of variable and
value is a value of env variable.

timeout A timeout for cmd in seconds. By default there is no timeout.

shell If shell is True, the specified command will be executed through the shell. By default it
is False. In some cases it can be set to True by ZenMake even though you set it to False.

trigger A dict that describes conditions to run the rule. If any configured trigger returns True
then the rule will be run. You can configure one or more triggers for each rule. ZenMake
supports the following types of trigger:

always If it’s True then the rule will be run always. If it’s False and no other
triggers then the rule will not be run automatically.

paths-exist This trigger returns True only if configured paths exist on a file sys-
tem. You can set paths as a string, list of strings or as a dict like for config task
parameter source.

Examples in YAML format:

trigger:
paths-exist: /etc/fstab

trigger:
paths-exist: [/etc/fstab, /tmp/somefile]

trigger:
paths-exist:

startdir: '../foo-lib'
incl: '**/*.label'

Examples in Python format:

'trigger': {
'paths-exist' : '/etc/fstab',

}

'trigger': {
'paths-exist' : ['/etc/fstab', '/tmp/somefile'],

}

'trigger': {
'paths-exist' : dict(

startdir = ../foo-lib,
incl = '**/*.label',

),
}

paths-dont-exist This trigger is the same as paths-exist but returns True if
configured paths don’t exist.

env This trigger returns True only if all configured environment variables exist
and equal to configured values. Format is simple: it’s a dict where each key
is a name of variable and value is a value of environment variable.

no-targets If it is True this trigger returns True only if any of target files for
current dependency doesn’t exist. It can be useful to detect the need to run

8.4. rules 51

ZenMake Documentation, Release 0.11.0

‘build’ rule. This trigger cannot be used in ZenMake command ‘configure’.

func This trigger is a custom python function that must return True or False. This
function gets the following parameters as arguments:

zmcmd It’s a name of the current ZenMake command that has been used
to run the rule.

targets A list of configured/detected targets. It’s can be None if rule has
been run from command ‘configure’.

It’s better to use **kwargs in this function because some new parameters can
be added in the future.

This trigger cannot be used in YAML buildconf file.

Note: For any non-ZenMake dependency there are following default triggers for rules:

configure: { always: true }

build: { no-targets: true }

Any other rule: { always: false }

Note: You can use command line option -E/--force-edeps to run rules for external
dependencies without checking triggers.

zm-commands A list with names of ZenMake commands in which selected rule will be run.
By default each rule can be run in the ZenMake command with the same name only. For
example, rule ‘configure’ by default can be run with the command ‘configure’ and rule
‘build’ with the command ‘build’, etc. But here you can set up a different behavior.

8.5 buildtypes-map

This parameter is used only for external dependencies which are other ZenMake projects. By default
ZenMake uses value of current buildtype for all such dependencies to run rules but in some cases
names of buildtype can be not matched. For example, current project can have buildtypes debug and
release but project from dependency can have buildtypes dbg and rls. In this case you can use this
parameter to set up the map of these buildtype names.

Example in YAML format:

buildtypes-map:
debug : dbg
release : rls

Example in Python format:

buildtypes-map: {
'debug' : 'dbg',
'release' : 'rls',

}

Some examples can be found in the directory ‘external-deps’ in the repository here.

52 Chapter 8. Build config: edeps

https://github.com/pustotnik/zenmake/tree/master/demos

CHAPTER 9

Build config: extended syntax

For convenience, ZenMake supports some syntax extensions in buildconf files.

9.1 Syntactic sugar

There are some syntactic sugar constructions that can be used to make a buildconf a little shorter.

9.1.1 configure

It can be used as a replacement for configure task param.

For example you have (in YAML format):

tasks:
util:

features : cshlib
source : shlib/**/*.c
configure:
- do: check-headers
names : stdio.h

test:
features : cprogram
source : prog/**/*.c
use : util
configure:
- do: check-headers
names : stdio.h

So it can be converting into this:

53

ZenMake Documentation, Release 0.11.0

tasks:
util:

features : cshlib
source : shlib/**/*.c

test:
features : cprogram
source : prog/**/*.c
use : util

configure:
- do: check-headers

names : stdio.h

The configure above is the same as following construction:

byfilter:
- for: all

set:
configure:
- do: check-headers
names : stdio.h

In addition to regular arguments for configure task param you can use for/not-for/if in the same
way as in the byfilter.

Example:

tasks:
.. skipped

configure:
- do: check-headers

names : stdio.h
not-for: { task: mytask }

9.1.2 install

Like as previous configure this can be used as a replacement for install-files task param.

Example:

tasks:
.. skipped

install:
- for: { task: gui }

src: 'some/src/path/ui.res'
dst: '$(prefix)/share/$(prjname)'

9.2 Substitutions

There are two types of substitutions in ZenMake: bash-like variables with ability to use system environment variables
and built-in variables.

54 Chapter 9. Build config: extended syntax

ZenMake Documentation, Release 0.11.0

9.2.1 Bash-like variables

ZenMake supports substitution variables with syntax similar to syntax of bash variables.

Both $VAR and ${VAR} syntax are supported. These variables can be used in any buildconf parameter value of
string/text type.

in YAML format:

param: '${VAR}/some-string'

in Python format:

'param' : '${VAR}/some-string'

ZenMake looks such variables in environment variables at first and then in the buildconf file. You can use a $$
(double-dollar sign) to prevent use of environment variables.

Example in YAML format:

set 'fragment' variable
fragment: |

program
end program

set 'GCC_BASE_FLAGS' variable
GCC_BASE_FLAGS: -std=f2018 -Wall

tasks:

... skipped values

test:
features : fcprogram
source : src/calculator.f90 src/main.f90
includes : src/inc
use : staticlib sharedlib
configure:

- do: check-code
text: $$fragment # <-- substitution without env
label: fragment

buildtypes:
GCC_BASE_FLAGS can be overwritten by environment variable with the same name
debug : { fcflags: $GCC_BASE_FLAGS -O0 }
release: { fcflags: $GCC_BASE_FLAGS -O2 }
default: debug

Note: These substitution variables inherit values from parent buildconf in subdirs.

Also values for such variables can be set by some configuration actions. For example see var in configuration action
find-program. But in this case these values are not visible everywhere.

For YAML format there are some constraints with ${VAR} form due to YAML specification:

debug : { fcflags: $GCC_BASE_FLAGS -O0 } # works
debug : { fcflags: "$GCC_BASE_FLAGS -O0" } # works

(continues on next page)

9.2. Substitutions 55

ZenMake Documentation, Release 0.11.0

(continued from previous page)

debug : { fcflags: ${GCC_BASE_FLAGS} -O0 } # doesn't work
debug : { fcflags: "${GCC_BASE_FLAGS} -O0" } # works
debug :
fcflags: ${GCC_BASE_FLAGS} -O0 # works

9.2.2 Built-in variables

ZenMake has some built-in variables that can be used as substitutions. To avoid possible conflicts with environment
and bash-like variables the syntax of substitutions is a little bit different in this case:

in YAML format:

param: '$(var)/some-string'

in Python format:

'param' : '$(var)/some-string'

List of built-in variables:

prjname Name of the current project. It can be changed via name from here.

topdir Absolute path of startdir of the top-level buildconf file. Usually it is root directory of the current
project.

buildrootdir Absolute path of buildroot.

buildtypedir Absolute path of current buildtype directory. It is current value of buildroot plus current
buildtype.

prefix The installation prefix. It is a directory that is prepended onto all install directories and it defaults
to /usr/local on UNIX and C:/Program Files/$(prjname) on Windows. It can be
changed via environment variable PREFIX or via --prefix on the command line.

execprefix The installation prefix for machine-specific files. In most cases it is the same as the
$(prefix) variable. It was introduced mostly for compatibility with GNU standard: https:
//www.gnu.org/prep/standards/html_node/Directory-Variables.html. It can be changed via environ-
ment variable EXEC_PREFIX or via --execprefix on the command line.

bindir The directory for installing executable programs that users can run. It defaults to
$(exeprefix)/bin on UNIX and $(exeprefix) on Windows. It can be changed via envi-
ronment variable BINDIR or via --bindir on the command line.

sbindir The directory for installing executable programs that can be run, but are only generally useful
to system administrators. It defaults to $(exeprefix)/sbin on UNIX and $(exeprefix)
on Windows. It can be changed via environment variable SBINDIR or via --sbindir on the
command line.

libexecdir The directory for installing executable programs to be run by other programs rather than by
users. It defaults to $(exeprefix)/libexec on UNIX and $(exeprefix) on Windows. It
can be changed via environment variable LIBEXECDIR or via --libexecdir on the command
line.

libdir The installation directory for object files and libraries of object code. It defaults to
$(exeprefix)/lib or $(exeprefix)/lib64 on UNIX and $(exeprefix) on Win-
dows. On Debian/Ubuntu, it may be $(exeprefix)/lib/<multiarch-tuple>. It can be
changed via environment variable LIBDIR or via --libdir on the command line.

56 Chapter 9. Build config: extended syntax

https://www.gnu.org/prep/standards/html_node/Directory-Variables.html
https://www.gnu.org/prep/standards/html_node/Directory-Variables.html

ZenMake Documentation, Release 0.11.0

sysconfdir The installation directory for read-only single-machine data. It defaults to $(prefix)/
etc on UNIX and $(prefix) on Windows. It can be changed via environment variable
SYSCONFDIR or via --sysconfdir on the command line.

sharedstatedir The installation directory for modifiable architecture-independent data. It defaults to /
var/lib on UNIX and $(prefix) on Windows. It can be changed via environment variable
SHAREDSTATEDIR or via --sharedstatedir on the command line.

localstatedir The installation directory for modifiable single-machine data. It defaults to $(prefix)/
var. It can be changed via environment variable LOCALSTATEDIR or via --localstatedir
on the command line.

includedir The installation directory for C header files. It defaults to $(prefix)/include. It can be
changed via environment variable INCLUDEDIR or via --includedir on the command line.

datarootdir The installation root directory for read-only architecture-independent data. It defaults to
$(prefix)/share on UNIX and $(prefix) on Windows. It can be changed via environment
variable DATAROOTDIR or via --datarootdir on the command line.

datadir The installation directory for read-only architecture-independent data. It defaults to
$(datarootdir). It can be changed via environment variable DATADIR or via --datadir
on the command line.

appdatadir The installation directory for read-only architecture-independent application data. It defaults
to $(datarootdir)/$(prjname) on UNIX and $(datarootdir) on Windows. It can be
changed via environment variable APPDATADIR or via --appdatadir on the command line.

docdir The installation directory for documentation. It defaults to $(datarootdir)/doc/
$(prjname) on UNIX and $(datarootdir)/doc on Windows. It can be changed via envi-
ronment variable DOCDIR or via --docdir on the command line.

mandir The installation directory for man documentation. It defaults to $(datarootdir)/man. It
can be changed via environment variable MANDIR or via --mandir on the command line.

infodir The installation directory for info documentation. It defaults to $(datarootdir)/info. It
can be changed via environment variable INFODIR or via --infodir on the command line.

localedir The installation directory for locale-dependent data. It defaults to $(datarootdir)/
locale. It can be changed via environment variable LOCALEDIR or via --localedir on
the command line.

In some cases some extra variables are provided. For example, variables src and tgt are provided for the cmd in the
task parameter run.

Built-in variables cannot be used in buildconf parameters which are used to determine values of that built-in variables.
These parameters are:

• startdir, buildroot, realbuildroot

• buildtypedir only: the default in the buildtypes

• buildtypedir only: the buildtypes, platform and task in the byfilter

9.2. Substitutions 57

ZenMake Documentation, Release 0.11.0

58 Chapter 9. Build config: extended syntax

CHAPTER 10

Commands

Here are some descriptions of general commands. You can get the list of the all commands with a short descrip-
tion by zenmake help or zenmake --help. To get help on selected command you can use zenmake help
<selected command> or zenmake <selected command> --help. Some commands have short aliases.
For example you can use bld instead of build and dc instead of distclean.

configure Configure the project. In most cases you don’t need to call this command directly. The build com-
mand calls this command by itself if necessary. This command processes most of values from buildconf of a
project. Any change in buildconf leads to call of this command. You can change this behaviour with parameter
autoconfig in buildconf general features.

build Build the project in the current directory. It’s the main command. To see all possible parameters use zenmake
help build or zenmake build --help. For example you can use -v to see more info about building
process or -p to use progress bar instead of text logging. By default it calls the configure command by itself
if necessary.

test Build (if necessery) and run tests in the current directory. If the project has no tests it’s almost the same as running
the build command. The test command builds and runs tests by default while the build command doesn’t.

run Build the project (if necessery) and run one executable target from the build directory. You can specify build
task/target to run if the project has more than one executable targets or omit it if the project has only one
executable target. To provide command line args directly to your program you can put them after ‘–’ in command
line after all args for ZenMake. This command is for fast checking of the built project.

clean Remove build files for selected buildtype of the project. It doesn’t touch other build files.

cleanall Remove the build directory of the project with everything in it.

install Install the build targets in some destination directory using installation prefix. It builds targets by itself if
necessary. You can control paths with environment variables or command line parameters (see zenmake help
install). It looks like classic make install in common.

uninstall Remove the build targets installed with the install command.

59

ZenMake Documentation, Release 0.11.0

60 Chapter 10. Commands

CHAPTER 11

Environment variables

ZenMake supports some environment variables that can be used. Most of examples are for POSIX platforms
(Linux/MacOS) with gcc and clang installed. Also see bash-like substitutions.

AR Set archive-maintaining program.

CC Set C compiler. It can be name of installed a system compiler or any path to existing compiler. It overrides values
from build config if present. Example:

CC=clang zenmake build -B

CXX Set C++ compiler. It can be name of installed a system compiler or any path to existing compiler. It overrides
values from build config if present. Example:

CXX=clang++ zenmake build -B

DC Set D compiler. It can be name of installed a system compiler or any path to existing compiler. It overrides values
from build config if present. Example:

DC=ldc2 zenmake build -B

FC Set Fortran compiler. It can be name of installed a system compiler or any path to existing compiler. It overrides
values from build config if present. Example:

FC=gfortran zenmake build -B

AS Set Assembler. It can be name of installed a system compiler or any path to existing compiler. It overrides values
from build config if present. Example:

AS=gcc zenmake build -B

ARFLAGS Flags to give the archive-maintaining program.

CFLAGS Extra flags to give to the C compiler. Example:

61

ZenMake Documentation, Release 0.11.0

CFLAGS='-O3 -fPIC' zenmake build -B

CXXFLAGS Extra flags to give to the C++ compiler. Example:

CXXFLAGS='-O3 -fPIC' zenmake build -B

CPPFLAGS Extra flags added at the end of compilation commands for C/C++.

DFLAGS Extra flags to give to the D compiler. Example:

DFLAGS='-O' zenmake build -B

FCFLAGS Extra flags to give to the Fortran compiler. Example:

FCFLAGS='-O0' zenmake build -B

ASFLAGS Extra flags to give to the Assembler. Example:

ASFLAGS='-Os' zenmake build -B

LINKFLAGS Extra list of linker flags for C/C++/D/Fortran. Example:

LINKFLAGS='-Wl,--as-needed' zenmake build -B

LDFLAGS Extra list of linker flags at the end of the link command for C/C++/D/Fortran. Example:

LDFLAGS='-Wl,--as-needed' zenmake build -B

ASLINKFLAGS Extra list of linker flags for Assembler files. Example:

ASLINKFLAGS='-s' zenmake build -B

JOBS Default value for the amount of parallel jobs. Has no effect when -j is provided on the command line.
Example:

JOBS=2 zenmake build

NUMBER_OF_PROCESSORS Default value for the amount of parallel jobs when the JOBS environment variable
is not provided; it is usually set on windows systems. Has no effect when -j is provided on the command line.

NOCOLOR When set to a non-empty value, colors in console outputs are disabled. Has no effect when --color
is provided on the command line. Example:

NOCOLOR=1 zenmake build

NOSYNC When set to a non-empty value, console outputs are displayed in an asynchronous manner; console text
outputs may appear faster on some platforms. Example:

NOSYNC=1 zenmake build

BUILDROOT A path to the root of a project build directory. The path can be absolute or relative to the current
directory. See also buildroot. Example:

BUILDROOT=bld zenmake build

DESTDIR Default installation base directory when --destdir is not provided on the command line. It’s mostly
for installing to a temporary directory. For example it can be used to create deb/rpm/etc packages. Example:

62 Chapter 11. Environment variables

ZenMake Documentation, Release 0.11.0

DESTDIR=dest zenmake install

PREFIX Set value of built-in variable prefix as the installation prefix. This path is always considered as an absolute
path or as a relative path to DESTDIR. Example:

PREFIX=/usr zenmake install

EXEC_PREFIX Set value of built-in variable execprefix as the installation prefix for machine-specific files.

BINDIR Set value of built-in variable bindir as the directory for installing executable programs that users can run.
This path is always considered as an absolute path or as a relative path to DESTDIR. Example:

BINDIR=/usr/bin zenmake install

SBINDIR Set value of built-in variable sbindir as the directory for installing executable programs that can be run,
but are only generally useful to system administrators. This path is always considered as an absolute path or as
a relative path to DESTDIR.

LIBEXECDIR Set value of built-in variable libexecdir as the directory for installing executable programs to be run
by other programs rather than by users. This path is always considered as an absolute path or as a relative path
to DESTDIR.

LIBDIR Set value of built-in variable libdir as the installation directory for object files and libraries of object code.
This path is always considered as an absolute path or as a relative path to DESTDIR.

SYSCONFDIR Set value of built-in variable sysconfdir as the installation directory for read-only single-machine
data. This path is always considered as an absolute path or as a relative path to DESTDIR.

SHAREDSTATEDIR Set value of built-in variable sharedstatedir as the installation directory for modifiable
architecture-independent data. This path is always considered as an absolute path or as a relative path to
DESTDIR.

LOCALSTATEDIR Set value of built-in variable localstatedir as the installation directory for modifiable single-
machine data. This path is always considered as an absolute path or as a relative path to DESTDIR.

INCLUDEDIR Set value of built-in variable includedir as the installation directory for C header files. This path is
always considered as an absolute path or as a relative path to DESTDIR.

DATAROOTDIR Set value of built-in variable datarootdir as the installation root directory for read-only
architecture-independent data. This path is always considered as an absolute path or as a relative path to
DESTDIR.

DATADIR Set value of built-in variable datadir as the installation directory for read-only architecture-independent
data. This path is always considered as an absolute path or as a relative path to DESTDIR.

APPDATADIR Set value of built-in variable appdatadir as the installation directory for read-only architecture-
independent application data. This path is always considered as an absolute path or as a relative path to
DESTDIR.

DOCDIR Set value of built-in variable docdir as the installation directory for documentation. This path is always
considered as an absolute path or as a relative path to DESTDIR.

MANDIR Set value of built-in variable mandir as the installation directory for man documentation. This path is
always considered as an absolute path or as a relative path to DESTDIR.

INFODIR Set value of built-in variable infodir as the installation directory for info documentation. This path is
always considered as an absolute path or as a relative path to DESTDIR.

LOCALEDIR Set value of built-in variable localedir as the installation directory for locale-dependent data. This
path is always considered as an absolute path or as a relative path to DESTDIR.

63

ZenMake Documentation, Release 0.11.0

QT5_BINDIR Set the bin directory of the installed Qt5 toolkit. This directory must contain such tools like qmake,
moc, uic, etc. This path must be absolute native path or path relative to the current working directory but last
variant is not recommended. This variable can be especially useful for standalone installation of Qt5, for exam-
ple on Windows. The PATH and QT5_SEARCH_ROOT environment variables are ignored if QT5_BINDIR is
not empty.

QT5_LIBDIR Set the library directory of the installed Qt5 toolkit. This path must be absolute native path or path
relative to the current working directory but last variant is not recommended. Usually you don’t need to use this
variable if you set the QT5_BINDIR variable.

QT5_INCLUDES Set the directory with ‘includes’ of the installed Qt5 toolkit. This path must be absolute native
path or path relative to the current working directory but last variant is not recommended. Usually you don’t
need to use this variable if you set the QT5_BINDIR variable. This variable has no effect on systems with
pkg-config/pkgconf installed (while you don’t turn on the QT5_NO_PKGCONF).

QT5_SEARCH_ROOT Set the root directory to search for installed Qt5 toolkit(s). ZenMake will try to find the bin
directories of all Qt5 toolkits in this directory recursively. Dot not set this variable to path like / or C:\ because
it will slow down the detection very much. Qt5 toolkits found in this directory have priority over values from
the PATH environment variable. You can set more than one directories using path separator (; on Windows and
: on other OS) like this:

QT5_SEARCH_ROOT=/usr/local/qt:/usr/local/opt/qt zenmake

It defaults to C:\Qt on Windows. Usually you don’t need to use this variable on Linux.

QT5_MIN_VER Set minimum version of Qt5. For example it can be 5.1 or 5.1.2.

QT5_MAX_VER Set maximum version of Qt5. For example it can be 5.12 or 5.12.2.

QT5_USE_HIGHEST_VER By default ZenMake will use first useful version of Qt5. When this variable set to a
‘True’, ‘true’, ‘yes’ or non-zero number then ZenMake will try to use the highest version of Qt5 among found
versions.

QT5_NO_PKGCONF When set to a ‘True’, ‘true’, ‘yes’ or non-zero number, ZenMake will not use pkg-
config/pkgconf to configure building with Qt5. Usually you don’t need to use this variable.

QT5_{MOC,UIC,RCC,LRELEASE,LUPDATE} These variables can be used to specify full file paths to Qt5 tools
moc, uic, rcc, lrelease and lupdate. Usually you don’t need to use these variables.

ZM_CACHE_CFGACTIONS When set to a ‘True’, ‘true’, ‘yes’ or non-zero number, ZenMake tries to use a cache
for some configuration actions. Has no effect when --cache-cfg-actions is provided on the command
line. It can speed up next runs of some configuration actions but also it can ignore changes in toolchains, system
paths, etc. In general, it is safe to use it if there were no changes in the current system. Example:

ZM_CACHE_CFGACTIONS=1 zenmake configure

64 Chapter 11. Environment variables

CHAPTER 12

Supported languages

12.1 C/C++

C an C++ are main languages that ZenMake supports. And the most of ZenMake features were made for these
languages.

Supported compilers:

• C:

– GCC C (gcc): regularly tested

– CLANG C from LLVM (clang): regularly tested

– Microsoft Visual C/C++ (msvc): regularly tested

– Intel C/C++ (icc): should work but not tested

– IBM XL C/C++ (xlc): should work but not tested

– Oracle/Sun C (suncc): should work but not tested

– IRIX/MIPSpro C (irixcc): may be works, not tested

• C++:

– GCC C++ (g++): regularly tested

– CLANG C++ from LLVM (clang++): regularly tested

– Microsoft Visual C/C++ (msvc): regularly tested

– Intel C/C++ (icpc): should work but not tested

– IBM XL C/C++ (xlc++): should work but not tested

– Oracle/Sun C++ (sunc++): should work but not tested

Examples of projects can be found in the directory c and cpp in the repository here.

65

https://github.com/pustotnik/zenmake/tree/master/demos

ZenMake Documentation, Release 0.11.0

12.2 Assembler

ZenMake supports gas (GNU Assembler) and has experimental support for nasm/yasm.

Examples of projects can be found in the directory asm in the repository here.

12.3 D

ZenMake supports compiling for D language. You can configure and build D code like C/C++ code but there are some
limits:

• There is no support for MS Windows yet.

• There is no support for D package manager DUB.

While nobody uses ZenMake for D, there are no plans to resolve these issues.

Supported compilers:

• DMD Compiler - official D compiler (dmd): regularly tested

• GCC D Compiler (gdc): regularly tested

• LLVM D compiler (ldc2): regularly tested

Examples of projects can be found in the directory d in the repository here.

12.4 FORTRAN

ZenMake supports compiling for Fortran language.

Supported compilers:

• GCC Fortran Compiler (gfortran): regularly tested

• Intel Fortran Compiler (ifort): should work but not tested

Examples of projects can be found in the directory fortran in the repository here.

66 Chapter 12. Supported languages

https://github.com/pustotnik/zenmake/tree/master/demos
https://github.com/pustotnik/zenmake/tree/master/demos
https://github.com/pustotnik/zenmake/tree/master/demos

CHAPTER 13

Supported toolkits

13.1 Qt5

To build C++ project with Qt5 you can put qt5 in features. In such tasks in the source parameter not only .cpp files
but .qrc, .ui and .ts files can be specified as well.

There are additional task parameters for Qt5 tasks: moc, rclangprefix, langdir-defname, bld-langprefix, unique-
qmpaths, install-langdir.

There are also several additional environment variables for Qt5 toolkit such as: QT5_BINDIR, QT5_SEARCH_ROOT ,
QT5_LIBDIR and some others.

ZenMake tries to find Qt5 with qmake and searches for it in QT5_SEARCH_ROOT and in the system PATH
environment variables. You can use QT5_BINDIR to set directory path with qmake in it. The PATH and
QT5_SEARCH_ROOT environment variables are ignored in this case.

You can specify minimum/maximum version of Qt5 with the QT5_MIN_VER and QT5_MAX_VER environment vari-
ables.

To specify needed Qt5 modules you should use the use parameter like this:

use : QtWidgets QtDBus # original title case of Qt5 modules must be used

ZenMake always adds QtCore module to the use for tasks with qt5 in features because every other Qt5 module
depends on QtCore module. So you don’t need to specify QtCore to the use parameter.

Simple Qt5 task can be like that:

tasks:
myqt5app:
features : cxxprogram qt5
source : prog/**/*.cpp prog/**/*.qrc prog/**/*.ui prog/**/*.ts
moc : prog/**/*.h
use : QtWidgets

Also it is recommended to look at examples in the qt5 directory in the repository here.

67

https://github.com/pustotnik/zenmake/tree/master/demos

ZenMake Documentation, Release 0.11.0

68 Chapter 13. Supported toolkits

CHAPTER 14

Configuration actions

ZenMake supports some configuration actions. They can be used to check system libraries, headers, etc. To set
configuration actions use the configure parameter in task params. The value of the configure parameter must
be a list of such actions. An item in the list can be a dict where do specifies what to do, in other words it is some
type of configuration action. It’s like a function where do describes the name of a function and others parameters are
parameters for the function.

There is another possible value for such an item in python format of buildconf file and it is a python function which
must return True/False on Success/Failure. If such a function raises some exception then ZenMake interprets it as if the
function returns False. This function can be without arguments or with named arguments: taskname, buildtype.
It’s better to use **kwargs to have universal way to work with any input arguments.

These actions can be run sequentially or in parallel (see do = parallel). And they all are called on the configure
step (in command configure).

Results of the same configuration actions are cached when it’s possible but not between runnings of ZenMake.

These configuration actions in dict format:

do = check-headers Parameters: names, defname = ‘’, defines = [], mandatory = True.

Supported languages: C, C++.

Check existence of C/C++ headers from the names list.

The defname parameter is a name of a define to set for your code when the action is over. By
default the name for each header is generated in the form ‘HAVE_<HEADER NAME>=1’. For
example, if you set ‘cstdio’ in the names then the define ‘HAVE_CSTDIO=1’ will be generated.
If you set ‘stdio.h’ in the names then the define ‘HAVE_STDIO_H=1’ will be generated.

The defines parameter can be used to set additional C/C++ defines to use in compiling of the
action. These defines will not be set for your code, only for the action.

The toolchain, includes and libpath task parameters affect this type of action.

do = check-libs Parameters: names = [], fromtask = True, defines = [], autodefine =
False, mandatory = True.

Supported languages: C, C++.

69

ZenMake Documentation, Release 0.11.0

Check existence of the shared libraries from the libs task parameter or/and from the names
list. If fromtask is set to False then names of libraries from the libs task parameter will
not be used for checking. If autodefine is set to True it generates C/C++ define name like
HAVE_LIB_LIBNAME=1.

The defines parameter can be used to set additional C/C++ defines to use in compiling of the
action. These defines will not be set for your code, only for the action.

The toolchain, includes and libpath task parameters affect this type of action.

do = check-code Parameters: text = ‘’, file = ‘’, label = ‘’, defines = [], defname = ‘’,
execute = False, mandatory = True.

Supported languages: C, C++, D, Fortran.

Provide piece of code for the test. Code can be provided with the text parameter as a plane text
or with the file parameter as a path to the file with a code. This path can be absolute or relative
to the startdir. At least one of the text or file parameters must be set.

The label parameter can be used to mark message of the test. If the execute parameter is True
it means that the resulting binary will be executed and the result will have effect on the current
configuration action.

The defname parameter is a name of C/C++/D/Fortran define to set for your code when the test is
over. There is no such a name by default.

The defines parameter can be used to set additional C/C++/D/Fortran defines to use in compiling
of the test. These defines will not be set for your code, only for the test.

The toolchain, includes and libpath task parameters affect this type of action.

do = find-program Parameters: names, paths, var = ‘’, mandatory = True.

Supported languages: all languages supported by ZenMake.

Find a program. The names parameter must be used to specify one or more possible file names for
the program. Do not add an extension for portability. This action does nothing if names is empty.

The paths parameter can be used to set paths to find the program, but usually you don’t need
to use it because by default the PATH system environment variable is used. Also the Windows
Registry is used on MS Windows if the program was not found.

The var parameter can be used to set substitution variable name. By default it’s a first name from
the names in upper case and without symbols ‘-’ and ‘.’. If this name is found in environment
variables, ZenMake will use it instead of trying to find the program. Also this name can be used in
parameter run like this:

in YAML format:

foo.luac:
source : foo.lua
configure : [{ do: find-program, names: luac }]
var 'LUAC' will be set in 'find-program' if 'luac' is found.
run: '${LUAC} -s -o $(tgt) $(src)'

in Python format:

'foo.luac' : {
'source' : 'foo.lua',
'configure' : [dict(do = 'find-program', names = 'luac'),],
var 'LUAC' will be set in 'find-program' if 'luac' is found.

(continues on next page)

70 Chapter 14. Configuration actions

ZenMake Documentation, Release 0.11.0

(continued from previous page)

'run': '${LUAC} -s -o $(tgt) $(src)',
},

do = find-file Parameters: names, paths, var = ‘’, mandatory = True.

Supported languages: all languages supported by ZenMake.

Find a file on file system. The names parameter must be used to specify one or more possible file
names. This action does nothing if names is empty.

The paths parameter must be used to set paths to find the file. Each path can be absolute or
relative to the startdir. By default it’s ‘.’ which means startdir.

The var parameter can be used to set substitution variable name. By default it’s a first name from
the names in upper case and without symbols ‘-’ and ‘.’.

do = call-pyfunc Parameters: func, mandatory = True.

Supported languages: any but only in python format of buildconf file.

Call a python function. It’a another way to use python function as an action. In this way you can
use the mandatory parameter.

do = pkgconfig Parameters: toolname = ‘pkg-config’, toolpaths, packages, cflags
= True, libs = True, static = False, defnames = True, def-pkg-vars,
tool-atleast-version, pkg-version = False, mandatory = True.

Supported languages: C, C++.

Execute pkg-config or compatible tool (for example pkgconf) and use results. The
toolname parameter can be used to set name of the tool and it is ‘pkg-config’ by default. The
toolpaths parameter can be used to set paths to find the tool, but usually you don’t need to use
it.

The packages parameter is required parameter to set one or more names of packages in database
of pkg-config. Each such a package name can be used with ‘>’, ‘<’, ‘=’, ‘<=’ or ‘>=’ to check
version of a package.

The parameters named cflags (default: True), libs = (default: True), static (default: False)
are used to set corresponding command line parameters --cflags, --libs, --static for
‘pkg-config’ to get compiler/linker options. If cflags or libs is True then obtained com-
piler/linker options are used by ZenMake in a build task. Parameter static means forcing of
static libraries and it is ignored if cflags and libs are False.

The defnames parameter is used to set C/C++ defines. It can be True/False or dict. If it’s True
then default names for defines will be used. If it’s False then no defines will be used. If it’s dict
then keys must be names of used packages and values must be dicts with keys have and version
and values as names for defines. By default it’s True. Each package can have ‘HAVE_PKGNAME’
and ‘PKGNAME_VERSION’ define where PKGNAME is a package name in upper case. And it’s
default patterns. But you can set custom defines. Name of ‘PKGNAME_VERSION’ is used only
if pkg-version is True.

The pkg-version parameter can be used to get ‘define’ with version of a package. It can be
True of False. If it’s True then ‘define’ will be set. If it’s False then corresponding ‘define’ will not
be set. It’s False by default. This parameter will not set ‘define’ if defnames is False.

The def-pkg-vars parameter can be used to set custom values of variables for ‘pkg-config’. It
must be dict where keys and values are names and values of these variables. ZenMake uses the
command line option --define-variable for this parameter. It’s empty by default.

71

ZenMake Documentation, Release 0.11.0

The tool-atleast-version parameter can be used to check minimum version of selected
tool (pkg-config).

Examples in YAML format:

Elements like 'tasks' and other task params are skipped

ZenMake will check package 'gtk+-3.0' and set define 'HAVE_GTK_3_0=1'
configure:

- do: pkgconfig
packages: gtk+-3.0

ZenMake will check packages 'gtk+-3.0' and 'pango' and
will check 'gtk+-3.0' version > 1 and <= 100.
Before checking of packages ZenMake will check that 'pkg-config'
→˓version
is greater than 0.1.
Also it will set defines 'WE_HAVE_GTK3=1', 'HAVE_PANGO=1',
GTK3_VER="gtk3-ver" and LIBPANGO_VER="pango-ver" where 'gtk3-ver'
and 'pango-ver' are values of current versions of
'gtk+-3.0' and 'pango'.
configure:

- do: pkgconfig
packages: 'gtk+-3.0 > 1 pango gtk+-3.0 <= 100'
tool-atleast-version: '0.1'
pkg-version: true
defnames:

gtk+-3.0: { have: WE_HAVE_GTK3, version: GTK3_VER }
pango: { version: LIBPANGO_VER }

Examples in Python format:

Elements like 'tasks' and other task params are skipped

ZenMake will check package 'gtk+-3.0' and set define 'HAVE_GTK_3_0=1'
'configure' : [

{ 'do' : 'pkgconfig', 'packages' : 'gtk+-3.0' },
]

ZenMake will check packages 'gtk+-3.0' and 'pango' and
will check 'gtk+-3.0' version > 1 and <= 100.
Before checking of packages ZenMake will check that 'pkg-config'
→˓version
is greater than 0.1.
Also it will set defines 'WE_HAVE_GTK3=1', 'HAVE_PANGO=1',
GTK3_VER="gtk3-ver" and LIBPANGO_VER="pango-ver" where 'gtk3-ver'
and 'pango-ver' are values of current versions of
'gtk+-3.0' and 'pango'.
'configure' : [

{
'do' : 'pkgconfig',
'packages' : 'gtk+-3.0 > 1 pango gtk+-3.0 <= 100 ',
'tool-atleast-version' : '0.1',
'pkg-version' : True,
'defnames' : {

'gtk+-3.0' : { 'have' : 'WE_HAVE_GTK3', 'version': 'GTK3_VER
→˓' },

'pango' : { 'version': 'LIBPANGO_VER' },

(continues on next page)

72 Chapter 14. Configuration actions

ZenMake Documentation, Release 0.11.0

(continued from previous page)

},
},

],

do = toolconfig Parameters: toolname = ‘pkg-config’, toolpaths, args = ‘–cflags –libs’,
static = False, parse-as = ‘flags-libs’, defname, var, msg, mandatory = True.

Supported languages: any.

Execute any *-config tool. It can be pkg-config, sdl-config, sdl2-config, mpicc, etc.

ZenMake doesn’t know which tool will be used and therefore this action can be used in any task
including standalone runcmd task.

The toolname parameter must be used to set name of such a tool. The toolpaths parameter
can be used to set paths to find the tool, but usually you don’t need to use it.

The args parameter can be used to set command line arguments. By default it is ‘–cflags –libs’.

The static parameter means forcing of static libraries and it is ignored if parse-as is not set
to ‘flags-libs’.

The parse-as parameter describes how to parse output. If it is ‘none’ then output will not be
parsed. If it is ‘flags-libs’ then ZenMake will try to parse the output for compiler/linker options
but ZenMake knows how to parse C/C++ compiler/linker options only, other languages are not
supported for this value. And if it is ‘entire’ then output will not be parsed but value of output will
be set to define name from the defname and/or var if they are defined. By default parse-as is
set to ‘flags-libs’.

The defname parameter can be used to set C/C++ define. If parse-as is set to ‘flags-libs’ then
ZenMake will try to set define name by using value of the toolname discarding ‘-config’ part if
it exists. For example if the toolname is ‘sdl2-config’ then ‘HAVE_SDL2=1’ will be used. For
other values of parse-as there is no default value for defname but you can set some custom
define name.

The var parameter can be used to set substitution variable name. This parameter is ignored if value
of parse-as is not ‘entire’. By default it is not defined.

The msg parameter can be used to set custom message for this action.

Examples in YAML format:

tasks:
myapp:

other task params are skipped
configure:
ZenMake will get compiler/linker options for SDL2 and
set define to 'HAVE_SDL2=1'
- do: toolconfig
toolname: sdl2-config
ZenMake will get SDL2 version and put it in the define 'SDL2_

→˓VERSION'
- do: toolconfig
toolname: sdl2-config
msg: Getting SDL2 version
args: --version
parse-as: entire
defname: SDL2_VERSION

Examples in Python format:

73

ZenMake Documentation, Release 0.11.0

tasks = {
'myapp' : {

other task params are skipped
'configure' : [

ZenMake will get compiler/linker options for SDL2 and
set define to 'HAVE_SDL2=1'
{ 'do' : 'toolconfig', 'toolname' : 'sdl2-config' },
ZenMake will get SDL2 version and put it in the define

→˓'SDL2_VERSION'
{

'do' : 'toolconfig',
'toolname' : 'sdl2-config',
'msg' : 'Getting SDL2 version',
'args' : '--version',
'parse-as' : 'entire',
'defname' : 'SDL2_VERSION',

},
]

},
}

do = write-config-header Parameters: file = ‘’, guard = ‘’, remove-defines = True,
mandatory = True.

Supported languages: C, C++.

Write a configuration header in the build directory after some configuration actions. By default file
name is <task name>_config.h. The guard parameter can be used to change C/C++ header
guard. The remove-defines parameter means removing the defines after they are added into
configuration header file and it is True by default.

In your C/C++ code you can just include this file like that:

#include "yourconfig.h"

You can override file name by using the file parameter.

do = parallel Parameters: actions, tryall = False, mandatory = True.

Supported languages: all languages supported by ZenMake.

Run configuration actions from the actions parameter in parallel. Not all types of actions
are supported. Allowed actions are check-headers, check-libs, check-code and
call-pyfunc.

If you use call-pyfunc in actions you should understand that python function must be thread
safe. If you don’t use any shared data in such a function you don’t need to worry about concurrency.

If the tryall parameter is True then all configuration actions from the actions parameter will
be executed despite of errors. By default the tryall is False.

You can control order of the actions by using the parameters before and after with the parame-
ter id. For example, one action can have id = 'base' and then another action can have after
= 'base'.

Any configuration action has the mandatory parameter which is True by default. It also has effect for any action
inside actions for parallel actions and for the whole bundle of parallel actions as well.

All results (defines and some other values) of configuration actions (excluding call-pyfunc) in one build task can
be exported to all dependent build tasks. Use export with the name config-results for this ability. It allows you to avoid
writing the same config actions in tasks and reduce configuration actions time run.

74 Chapter 14. Configuration actions

ZenMake Documentation, Release 0.11.0

Example in python format:

def check(**kwargs):
buildtype = kwargs['buildtype']
some checking
return True

tasks = {
'myapp' : {

'features' : 'cxxshlib',
'libs' : ['m', 'rt'],
...
'configure' : [

do checking in function 'check'
check,
Check libs from param 'libs'
{ 'do' : 'check-libs' },
{ 'do' : 'check-headers', 'names' : 'cstdio', 'mandatory' : True },
{ 'do' : 'check-headers', 'names' : 'cstddef stdint.h', 'mandatory' :

→˓False },
Each lib will have define 'HAVE_LIB_<LIBNAME>' if autodefine = True
{ 'do' : 'check-libs', 'names' : 'pthread', 'autodefine' : True,

'mandatory' : False },
{ 'do' : 'find-program', 'names' = 'python' },
{ 'do' : 'parallel',

'actions' : [
{ 'do' : 'check-libs', 'id' : 'syslibs' },
{ 'do' : 'check-headers', 'names' : 'stdlib.h iostream' },
{ 'do' : 'check-headers', 'names' : 'stdlibasd.h', 'mandatory' :

→˓False },
{ 'do' : 'check-headers', 'names' : 'string', 'after' : 'syslibs'

→˓},
],
'mandatory' : False,
#'tryall' : True,

},

#{ 'do' : 'write-config-header', 'file' : 'myapp_config.h' }
{ 'do' : 'write-config-header' },

],
},

}

75

ZenMake Documentation, Release 0.11.0

76 Chapter 14. Configuration actions

CHAPTER 15

Dependencies

ZenMake supports several types of dependencies for build projects:

• System libraries

• Local libraries

• Sub buildconfs

• External dependencies

– ZenMake projects

– Non-ZenMake projects

– Common notes

15.1 System libraries

System libraries can be specified by using the config parameter libs. Usually you don’t need to set paths to system
libraries but you can set them using the config parameter libpath.

15.2 Local libraries

Local libraries are libraries from your project. Use the config parameter use to specify such dependencies.

77

ZenMake Documentation, Release 0.11.0

15.3 Sub buildconfs

You can organize building of your project by using more than one buildconf file in some sub directories of your project.
In this case ZenMake merges parameters from all such buildconf files. But you must specify these sub directories by
using the config parameter subdirs.

Parameters in the sub buildconf can always overwrite matching parameters from the parent buildconf . But some
parameters are not changed.

These parameters can be set only in the the top-level buildconf:

buildroot, realbuildroot, project, general, cliopts

Also default build type can be set only in the top-level buildconf.

These parameters are always used without merging with parent buildconfs:

startdir, subdirs, tasks

ZenMake doesn’t merge your own variables in your buildconf files if you use some of them. Other variables are
merged including byfilter. But build tasks in the byfilter which are not from the current buildconf are ignored
excepting explicit specified ones.

Some examples can be found in the directory ‘subdirs’ in the repository here.

15.4 External dependencies

A few basic types of external dependencies can be used:

• Depending on other ZenMake projects

• Depending on non-ZenMake projects

See full description of buildconf parameters for external dependencies here.

15.4.1 ZenMake projects

Configuration for this type of dependency is simple in most cases: you set up the config variable edeps with the
rootdir and the export-includes (if it’s necessary) and then specify this dependency in use, using existing task names
from dependency buildconf.

Example in YAML format:

edeps:
zmdep:

rootdir: ../zmdep
export-includes: ../zmdep

tasks:
myutil:

features : cxxshlib
source : 'shlib/**/*.cpp'
Names 'calclib' and 'printlib' are existing tasks in 'zmdep' project
use: zmdep:calclib zmdep:printlib

Example in Python format:

78 Chapter 15. Dependencies

https://github.com/pustotnik/zenmake/tree/master/demos

ZenMake Documentation, Release 0.11.0

edeps = {
'zmdep' : {

'rootdir': '../zmdep',
'export-includes' : '../zmdep',

},
}

tasks = {
'myutil' : {

'features' : 'cxxshlib',
'source' : 'shlib/**/*.cpp',
Names 'calclib' and 'printlib' are existing tasks in 'zmdep' project
'use' : 'zmdep:calclib zmdep:printlib',

},
}

Additionally, in some cases, the parameter buildtypes-map can be useful.

Also it’s recommended to use always the same version of ZenMake for all such projects. Otherwise there are some
compatible problems can be occured.

Note: Command line options --force-edeps and --buildtype for current project will affect rules for its
external dependencies while all other command line options will be ignored. You can use environment variables to
have effect on all external dependencies. And, of course, you can set up each buildconf in the dependencies to have
desirable behavior.

15.4.2 Non-ZenMake projects

You can use external dependencies from some other build systems but in this case you need to set up more param-
eters in the config variable edeps. Full description of these parameters can be found here. Only one parameter
buildtypes-map is not used for such dependencies.

If it’s necessary to set up different targets for different buildtypes you can use selectable parameters in build tasks of
your ZenMake project.

Example in Python format:

foolibdir = '../foo-lib'

edeps = {
'foo-lib-d' : {

'rootdir': foolibdir,
'export-includes' : foolibdir,
'targets': {

'shared-lib' : {
'dir' : foolibdir + '/_build_/debug',
'type': 'shlib',
'name': 'fooutil',

},
},
'rules' : {

'build' : 'make debug',
},

},
'foo-lib-r' : {

(continues on next page)

15.4. External dependencies 79

ZenMake Documentation, Release 0.11.0

(continued from previous page)

'rootdir': foolibdir,
'export-includes' : foolibdir,
'targets': {

'shared-lib' : {
'dir' : foolibdir + '/_build_/release',
'type': 'shlib',
'name': 'fooutil',

},
},
'rules' : {

'build' : 'make release',
},

},
}

tasks = {
'util' : {

'features' : 'cxxshlib',
'source' : 'shlib/**/*.cpp',

},
'program' : {

'features' : 'cxxprogram',
'source' : 'prog/**/*.cpp',
'use.select' : {

'debug' : 'util foo-lib-d:shared-lib',
'release' : 'util foo-lib-r:shared-lib',

},
},

}

15.4.3 Common notes

You can use command line option -E/--force-edeps to run rules for external dependencies without checking
triggers.

Some examples can be found in the directory ‘external-deps’ in the repository here.

80 Chapter 15. Dependencies

https://github.com/pustotnik/zenmake/tree/master/demos

CHAPTER 16

Tests

ZenMake supports building and running tests. It has no special support for particular testing framework/library but it
can be any testing framework/library.

To set up a test you need to specify task feature test in buildconf file. Then you have a choice:

• If selected task has feature *program then you may not need to do anything more. ZenMake wil try to build/run
this task as test as is. But you can specify task parameter run to set up additional arguments.

• If selected task has no feature *program and has no run but has *stlib/*shlib then this task is considered as a
task with test but ZenMake will not try to run this task as a test. It’s useful for creation of separated libraries for
tests only.

• Specify task parameter run.

Tests are always built only on build stage and run only on test stage. Order of buiding and running test tasks is
controlled by their depedencies as for just build tasks. So it’s possible to use task parameter use to control order of
running of tests.

Example of test tasks in YAML format:

stlib-test:
features : cxxprogram test'
source : tests/test_stlib.cpp
testcmn here is some library with common code for tests
use : stlib testcmn

test from script:
features: test
run:

cmd : python tests/test.py
cwd : .
shell: false

use: complex
configure: [{ do: find-program, names: python }]

testcmn is a library with common code for tests only

(continues on next page)

81

ZenMake Documentation, Release 0.11.0

(continued from previous page)

testcmn:
features: cxxshlib test
source : tests/common.cpp
includes: .

shlib-test:
features: cxxprogram test
source : tests/test_shlib.cpp
use : shlib testcmn
run:

cmd : '$(tgt) a b c'
env : { AZ : '111', BROKEN_TEST : 'false' }
repeat : 2
timeout : 10 # in seconds
shell : false

shlibmain-test:
features: cxxprogram test
source : tests/test_shlibmain.cpp
use : shlibmain testcmn

Example of test tasks in python format:

'stlib-test' : {
'features' : 'cxxprogram test',
'source' : 'tests/test_stlib.cpp',
testcmn here is some library with common code for tests
'use' : 'stlib testcmn',

},

'test from script' : {
'features' : 'test',
'run' : {

'cmd' : 'python tests/test.py',
'cwd' : '.',
'shell' : False,

},
'use' : 'complex',
'configure' : [dict(do = 'find-program', names = 'python'),]

},
testcmn is a library with common code for tests only
'testcmn' : {

'features' : 'cxxshlib test',
'source' : 'tests/common.cpp',
'includes' : '.',

},
'shlib-test' : {

'features' : 'cxxprogram test',
'source' : 'tests/test_shlib.cpp',
'use' : 'shlib testcmn',
'run' : {

'cmd' : '$(tgt) a b c',
'env' : { 'AZ' : '111', 'BROKEN_TEST' : 'false'},
'repeat' : 2,
'timeout' : 10, # in seconds
'shell' : False,

},
(continues on next page)

82 Chapter 16. Tests

ZenMake Documentation, Release 0.11.0

(continued from previous page)

},
'shlibmain-test' : {

'features' : 'cxxprogram test',
'source' : 'tests/test_shlibmain.cpp',
'use' : 'shlibmain testcmn',

},

Use can build and/or run tests with command test. You can do it with command build as well but build doesn’t
do it by default, only if some command line arguments are used.

To build and run all tests with command test:

zenmake test

The same action with command build:

zenmake build -t yes -T all

To build but not run tests with command test:

zenmake test -T none

You can run all tests but also you can run tests only on changes. For this you can use --run-tests with value
on-changes:

zenmake test -T on-changes

To specify additional command line arguments for all compiled testing executables you can use --:

zenmake test -- -vs

Everything after -- is considered as extra command line arguments for executable target files.

83

ZenMake Documentation, Release 0.11.0

84 Chapter 16. Tests

CHAPTER 17

Performance tips

Here are some tips which can help to improve performance of ZenMake in some cases.

17.1 Hash algorithm

By default ZenMake uses sha1 algorithm to control changes of config/built files and for some other things. Modern
CPUs often have support for this algorithm and sha1 shows better or almost the same performance as md5 in this
cases. But in some other cases md5 can be faster and you can switch to use this hash algorithm. However, don’t expect
a big difference in performance of ZenMake.

It’s recommended to check if it really has positive effect before using of md5. To change hash algorithm you can use
parameter hash-algo in buildconf general features.

85

ZenMake Documentation, Release 0.11.0

86 Chapter 17. Performance tips

CHAPTER 18

FAQ

Why is python used?

It’s mostly because Waf is implemented in python.

Can I use buildconf.py as usual python script?

Yes, you can. Such a behavior is supported while you don’t try to use reserved config variable names for inappropriate
reasons.

I want to install my project via zenmake without ‘bin’ and ‘lib64’ in one directory

Example on Linux:

DESTDIR=your_install_path PREFIX=/ BINDIR=/ LIBDIR=/ zenmake install

or:

PREFIX=your_install_path BINDIR=your_install_path LIBDIR=your_install_path zenmake
→˓install

87

https://waf.io

ZenMake Documentation, Release 0.11.0

88 Chapter 18. FAQ

CHAPTER 19

Changelog

19.1 Version 0.11.0 (2022-09-04)

Added

• embed pyyaml

• add value ‘all’ for variable ‘for’ in the ‘byfilter’ parameter

• add buildconf parameter export-* for libpath, stlibpath and all *flags

• add the ‘cleanall’ command as replacement for the ‘distclean’ command

• remake/improve/extend substitutions (buildconf variables inside a text)

• add some syntactic sugar for buildconf

• get rid of ${TARGET} and rewrite substitution of ${SRC} and ${TGT}

• add ability to use ‘and’, ‘or’ and ‘not’ in the ‘*.select’

• add ‘host-os’ and ‘distro’ for the ‘*.select’ conditions

• add ‘if’ for the ‘byfilter’ parameter

• add the ‘run’ command

• support qt5 for c++ (almost done) #31

• enable absolute paths in path patterns

• add runtime lib paths for the ‘run’ command and for the ‘run’ feature

• support python 3.10

Changed

• update waf to 2.0.23

• fix bug with auto detection of interpreter in ‘runcmd’

• rename ‘include’ to ‘incl’ and ‘exclude’ to ‘excl’ for buildconf parameter ‘source’

89

ZenMake Documentation, Release 0.11.0

• rename buildconf parameter ‘matrix’ to ‘byfilter’

• rename ‘export-config-actions’ to ‘export-config-results’

• rename buildconf parameter ‘config-actions’ to ‘configure’

• remake and improve the buildconf parameters ‘export-*’

• prioritize yaml buildconf format

• fix bug of no automatic reconfiguration with changed env/cli args for install/uninstall

• rename buildconf ‘features’ to ‘general’

• fix bug with ‘enabled.select’

• improve buildconf validator

• extend/improve install directory vars

• fix problem when not all values from buildconf.cliopts have effect

• fix order of reading config values from env, cli and config file

• fix terminal width detection in CLI

• improve system libraries detection

• fix bug when zenmake could not find toolchain from sys env vars like CC, CXX, etc

• fix problem with found zero-byte executables (mostly windows problem)

• fix problem with short file names (8.3 filename) on windows

• fix bug when getting rid of CXX in cmd line does not induce reconfigure

• make stop child procces in the ‘run’ command on keyboard interrupt

• many other fixes

Removed

• drop python 2.x, 3.4 and pypy

• remove task features aliases: more problems than profits

• remove redundant ‘default-buildtype’ parameter

• remove the ‘platforms’ parameter

19.2 Version 0.10.0 (2020-09-23)

Added

• support Fortran language

• add basic D language support

• add selectable parameters for buildconf task parameters

• support external dependencies

• add ‘tryall’ and ‘after’/’before’ for parallel configuration actions

• add correct buildconf validation for nested types

• add configuration action ‘call-pyfunc’ (‘check-by-pyfunc’) to parallel actions

90 Chapter 19. Changelog

ZenMake Documentation, Release 0.11.0

• add configuration action ‘check-code’

• add configuration actions ‘pkgconfig’ and ‘toolconfig’ (support pkg-config and other *-config tools)

• add configuration action ‘find-file’

• add ‘remove-defines’ for configuration action ‘write-config-header’

• add option to add extra files to monitor (‘monitor-files’)

• add buildconf task parameters ‘stlibs’ and ‘stlibpath’

• add buildconf task parameters ‘monitlibs’ and ‘monitstlibs’

• add buildconf task parameter ‘export-config-actions’

• add buildconf task parameter ‘enabled’

• add buildconf task parameter ‘group-dependent-tasks’

• add add buildconf task parameter ‘install-files’

• add parameter ‘build-work-dir-name’ to buildconf ‘features’

• add simplified form of patterns using for buildconf task parameter ‘source’

• add custom substitution variables

• add detection of msvc, gfortran, ifort and D compilers for command ‘sysinfo’

• add number of CPUs for command ‘sysinfo’

• add ‘not-for’ condition for config var ‘matrix’

• add ability to set compiler flags in buildconf parameter ‘toolchains’

• add ability to use ‘run’ in buildconf as a string or function

• add cdmline options –verbose-configure (-A) and –verbose-build (-B)

• add cmdline option ‘–force-edeps’

• add c++ demo project with boost libraries

• add demo project with luac

• add demo project with ‘strip’ utility on linux

• add demo project with dbus-binding-tool

• add demo projects for gtk3

• add demo project for sdl2

• add codegen demo project

Changed

• improve support of spaces in values (paths, etc)

• improve unicode support

• use sha1 by default for hashes

• correct some english text in documentation

• detach build obj files from target files

• remove locks in parallel configuration actions

• small optimization of configuration actions

19.2. Version 0.10.0 (2020-09-23) 91

ZenMake Documentation, Release 0.11.0

• improve validation for parallel configuration actions

• improve error handling for configuration actions with python funcs

• improve buildconf errors handling

• improve use of buildconf parameter ‘project.version’

• remake/improve handling of cache/db files (see buildconf parameter ‘db-format’)

• reduce size of zenmake.pyz by ignoring some unused waf modules

• apply solution from waf issue 2272 to fix max path limit on windows with msvc

• rename ‘–build-tests’ to ‘–with-tests’, enable it for ‘configure’ and add ability to use -t and -T as flags

• rename ‘sys-lib-path’ to ‘libpath’ and fix bug with incorrect value

• rename ‘sys-libs’ to ‘libs’

• rename ‘conftests’ to ‘config-actions’

• rename config action ‘check-programs’ to ‘find-program’ and change behaviour

• make ordered configuration actions

• disable ‘:’ in task names

• refactor code to support task features in separated python modules

• don’t merge buildconf parameter ‘project’ in sub buildconfs (see ‘subdirs’)

• fix bug with toolchain supported more than one language

• fix some bugs with env vars

• fix compiling problem with the same files in different tasks

• fix bug with object file indexes

• fix command ‘clean’ for case when build dir is symlink

• fix Waf bug of broken ‘vnum’ for some toolchains

• fix parsing of cmd line in ‘runcmd’ on windows

• fix processing of destdir, prefix, bindir, libdir

Removed

• remove configuration action (test) ‘check’

19.3 Version 0.9.0 (2019-12-10)

Added

• add config parameter ‘startdir’

• add config parameter ‘subdirs’ to support sub configs

• add ‘buildroot’ as the command-line arg and the environment variable

• print header with some project info

• add parallel configuration tests

Changed

92 Chapter 19. Changelog

ZenMake Documentation, Release 0.11.0

• fix default command-line command

• fix problem of too long paths in configuration tests on Windows

• fix some small bugs in configuration tests

• rid of the wscript file during building

• improve buildconf validator

• improve checking of the task features

• update Waf to version 2.0.19

Removed

• remove config parameters ‘project.root’ and ‘srcroot’

19.3. Version 0.9.0 (2019-12-10) 93

ZenMake Documentation, Release 0.11.0

94 Chapter 19. Changelog

CHAPTER 20

License

BSD 3-Clause License

Copyright (c) 2019, 2020 Alexander Magola All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

95

	Introduction
	What is it?
	Main features
	Plans to do
	Project links

	Why?
	Quickstart guide
	Installation
	Via python package (pip)
	Via git
	As a zip application

	Build config
	startdir
	buildroot
	realbuildroot
	project
	general
	cliopts
	conditions
	tasks
	buildtypes
	toolchains
	byfilter
	subdirs
	edeps

	Build config: task parameters
	features
	target
	source
	includes
	toolchain
	cflags
	cxxflags
	dflags
	fcflags
	asflags
	cppflags
	linkflags
	ldflags
	aslinkflags
	arflags
	defines
	use
	libs
	libpath
	monitlibs
	stlibs
	stlibpath
	monitstlibs
	moc
	rclangprefix
	langdir-defname
	bld-langprefix
	unique-qmpaths
	rpath
	ver-num
	run
	configure
	export-<param> / export
	install-path
	install-files
	install-langdir
	normalize-target-name
	enabled
	group-dependent-tasks
	objfile-index

	Build config: selectable parameters
	Build config: edeps
	rootdir
	targets
	export-includes
	rules
	buildtypes-map

	Build config: extended syntax
	Syntactic sugar
	Substitutions

	Commands
	Environment variables
	Supported languages
	C/C++
	Assembler
	D
	FORTRAN

	Supported toolkits
	Qt5

	Configuration actions
	Dependencies
	System libraries
	Local libraries
	Sub buildconfs
	External dependencies

	Tests
	Performance tips
	Hash algorithm

	FAQ
	Changelog
	Version 0.11.0 (2022-09-04)
	Version 0.10.0 (2020-09-23)
	Version 0.9.0 (2019-12-10)

	License

